# **PROGRESSIVE**<sup>®</sup>

# Successes in Energy Management @ Progressive



February 27, 2024

### **Topics**

Intro & Ice Breaker

About Progressive and our Efforts

An Engineering Approach

HVAC & Building Automaton Programming

**Lighting Projects** 

Campus 2 Solar Array

Energy Savings in a WFH & Hybrid World

### Intro

### • Erik Rasmussen, CEM

- Sustainability Engineering Consultant
- BS in Mechanical Engineering
- 16 years of experience in energy engineering, auditing, HVAC, automation, and sustainability
- Joined Progressive's Real Estate Engineering Team in 2013
- Mark Mansell, CEM
  - Senior Engineering Consultant
  - 44 Years of experience in commercial and industrial HVAC, automation, and electrical systems
  - Joined Progressive's Real Estate Engineering Team in 2007

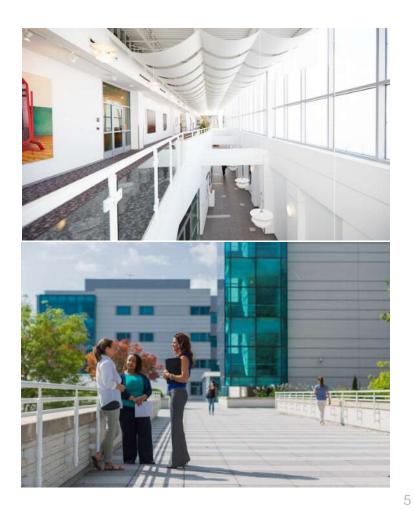


**REAL ESTATE & CORPORATE SERVICES** 

### **Ice Breaker**



How much does Progressive spend on electricity annually?



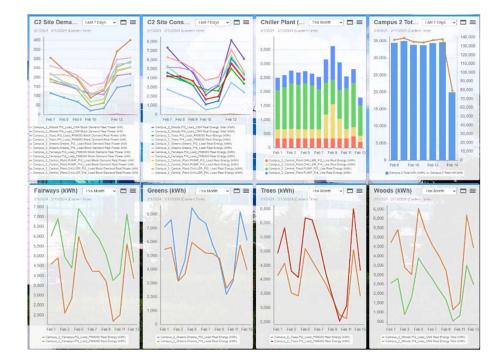

How many buildings does Progressive have nationwide?

4

# **About Progressive**

- Progressive was started in Cleveland, OH in 1937. We are now the 2<sup>nd</sup> largest insurer of personal automobiles in the US with over ~\$60B in premium written in 2022.
- Over 300 offices nationwide and over 50,000
   employees
- ~6.5 Million square feet of office space
- Corporate campuses in Ohio, Florida, and Colorado Springs
- Consolidating multiple data centers to 3 primary locations




# An Engineering Approach

- The Real Estate Engineering Team was formed in 2007 and is responsible for:
  - Building automation systems programming and administration
  - Review of project drawings
  - Run-the-business (RTB) efforts to ensure uptime
  - Energy management
  - Energy procurement
  - Environmental sustainability and carbon neutrality
- In-house teams for HVAC Techs, Electricians, and Plant Engineers



### **Energy Management Overview**

- Successfully reduced electric spend from ~\$18M to ~\$9M between 2007 and 2022 while doubling in size as a company
- Energy savings contest between regional sites



### **Sustainability Goals**

- Progressive has been a good steward of the environment and reducing energy consumption before sustainability became a buzzword.
- Committed to Carbon Neutrality on Scope 1 & 2 carbon emissions by 2025
- Committed to Net-Zero in the following decade
   Scope 1 and 2 Carbon Emissions 2008–2022<sup>[1]</sup>



### **HVAC & Building Automation Upgrades**

#### 2007

- Engineering team created
- Begin advanced automation programming and implementing schedules nationwide

#### 2010

New 400-ton chiller and "free cooling" upgrades at Campus 1

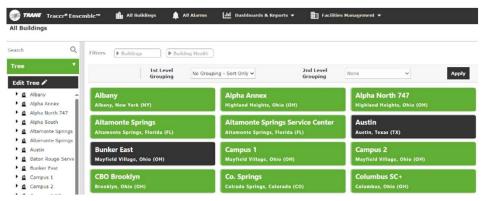
#### 2014

"Free cooling" upgrades at main data center

#### 2018

Replace over 500 pieces of HVAC equipment and all related automation controls in 2 buildings at Campus 1

#### 2020


Replace the chillers at Riverview, FL campus with three new variable speed 300-ton chillers

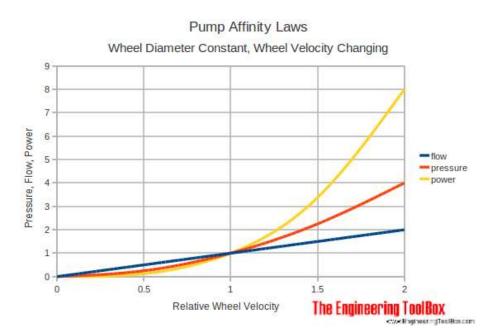
#### **Today**

- Currently working on building
   automation upgrades at Campus 2
- Re-evaluation of previously differed energy projects through a sustainability lens

### **BAS** Overview

- Multiple vintages of Trane controls including Tracker, Tracer Summit, and SC / SC+
- Nationwide enterprise network allows us to bring 63 sites into a common Tracer Ensemble web-based front end
- Engineering and HVAC team members have attended advanced factory training classes
- Bringing programming and troubleshooting in-house allows us to focus on solutions that are the best long-term solution rather than an "easy fix" for a contractor
- Data logging and alarming to alert us to malfunctions and energy inefficiencies
- You can't optimize what you can't measure!




### **BAS Scheduling**

- Getting accurate info from occupants and facility managers is key
- Make sending schedule updates part of the business groups' process
- Utilize advanced scheduling features such as Optimal Start / Stop
- Comfort and employee productivity must remain your top priority

| Active Schedules                 | All Schedules    | All Exceptions                       | All Calendars |                      |                  |              |       |                        |                  |
|----------------------------------|------------------|--------------------------------------|---------------|----------------------|------------------|--------------|-------|------------------------|------------------|
| Today 🧾 Wednes                   | aday, February 1 | 4, 2024 <                            | >             |                      |                  |              |       |                        | Create Exception |
|                                  |                  |                                      | 03 AM         | 06 AM                | 09 AM            | 12 PM        | 03 PM | 06 PM                  | 09 PM            |
| Daily Test<br>Binary             |                  | <u>midnight</u><br><u>Off</u>        |               |                      | 10 10:<br>Or Off | <u>15 AM</u> |       |                        |                  |
| Mock Up Schedule<br>HVAC         |                  | <u>midnight</u><br><u>Unoccupied</u> |               | 06:00 AM<br>Occupied |                  |              |       | 06:00 PM<br>Unoccupied |                  |
| Printing Schedule<br>HVAC        |                  | midnight<br>Occupied                 |               |                      |                  |              |       |                        |                  |
| RTU-01 Schedule Sect A 1<br>HVAC | 1st Fl           | <u>midnight</u><br><u>Unoccupied</u> |               | 05:30 AM<br>Occupied |                  |              |       | 06:00 PM<br>Unoccupied |                  |
| RTU-02 Schedule Sect A 2<br>HVAC | 2nd Fl           | midnight<br>Unoccupied               |               | 06:15 AM<br>Occupied |                  |              |       | 06:00 PM<br>Unoccupied |                  |

### **Equipment Staging**

- The Fan and Pump Affinity Law is your friend!
- Power consumption is cubed (x<sup>3</sup>) relative to speed increase
- Focus on staging equipment based on efficiency curves.
- Avoid waiting until a piece of equipment reaches 100% speed or cannot make setpoint before adding.



# **Critical Zone Reset (VAS)**

- Optimize duct static based on VAV damper positions
- Program increases duct static pressure of AHU or RTU when any one VAV reaches 95% air valve position
- Decrease the duct static pressure setpoint when all VAV's are less than 85% open
- It may be necessary to exclude some VAV's from the program. Examples include IT closets, unoccupied areas, stairwells, and thermostats impacted by sun exposure

| Variat                            | Variable Air Systems |           |                    |            |                           |                      |                              |  |  |  |
|-----------------------------------|----------------------|-----------|--------------------|------------|---------------------------|----------------------|------------------------------|--|--|--|
| Delete Create Variable Air System |                      |           |                    |            |                           |                      |                              |  |  |  |
|                                   | Name 🔺               | Occupancy | AHU Heat/Cool Mode | Supply Fan | Discharge Air Temperature | Duct Static Pressure | Average Space<br>Temperature |  |  |  |
|                                   | RTU-1 VAS            | Occupied  | Cool               | 33.0 %     | 60.4 °F                   | 1.230 in(H2O)        | 72.4 °F                      |  |  |  |
|                                   | RTU-2 VAS            | Occupied  | Cool               | 5.0 %      | 59.7 °F                   | 0.870 in(H2O)        | 72.6 °F                      |  |  |  |
|                                   | RTU-3 VAS            | Occupied  | Cool               | 46.0 %     | 58.4 °F                   | 1.160 in(H2O)        | 70.9 °F                      |  |  |  |

# **Critical Zone Reset (VAS) – Continued**

RTU-1 VAS

Variable Air Systems

Outdoor Conditions 30 °F / 53 % RH

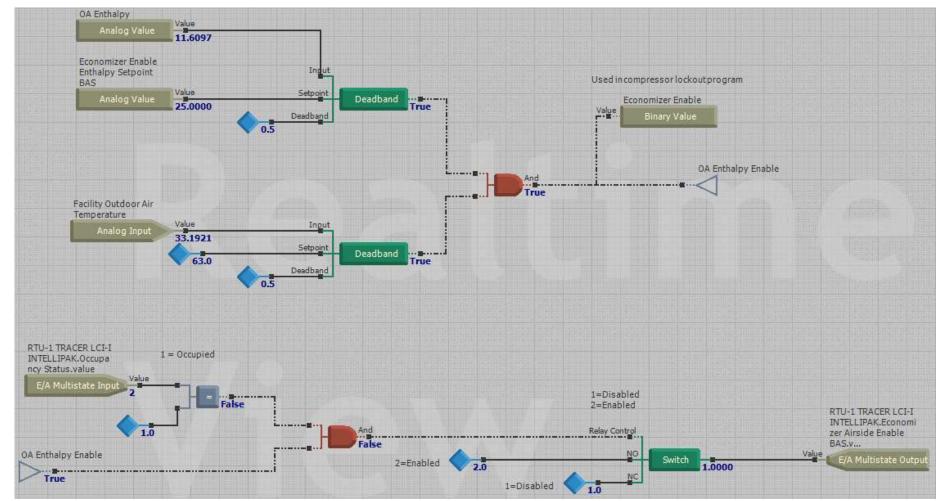
| < Applications     |                                                    |                                        |         |                               |          |  |  |  |  |  |  |
|--------------------|----------------------------------------------------|----------------------------------------|---------|-------------------------------|----------|--|--|--|--|--|--|
| Sta                | Alarms Data Logs Functions and Calc                | ulations Configuration Members Support | Details |                               |          |  |  |  |  |  |  |
| Active Diagnostics |                                                    |                                        |         |                               |          |  |  |  |  |  |  |
|                    | Conditions                                         | Value                                  |         | Status                        | Value    |  |  |  |  |  |  |
|                    | System Type                                        | VAV                                    |         | Occupancy Status              | Occupied |  |  |  |  |  |  |
|                    | Duct Static Pressure Active                        | 1.130 in(H <sub>2</sub> O)             |         | Operating Mode                | Occupied |  |  |  |  |  |  |
|                    | Duct Static Optimization Duct Static Setpoint      | 1.200 in(H2O)                          |         | System Mode                   | On       |  |  |  |  |  |  |
|                    | Outdoor Air Flow Active                            |                                        |         | System Mode Time Remaining    |          |  |  |  |  |  |  |
|                    | Ventilation Optimization Outdoor Air Flow Setpoint | 0.0 cfm                                |         | Air Handler Mode Request      | Occupied |  |  |  |  |  |  |
|                    |                                                    |                                        |         | Common Space VAV Mode Request | Occupied |  |  |  |  |  |  |

#### Members

Air Handler

| Name         | • | Discharge Air Temperature |         | ge Air Temperature<br>It Active | Duct Static               | Pressure Active  | Duct Static Pre<br>Setpoint Active |             | Operating Mode |         | Occupancy Request | Controlled By |
|--------------|---|---------------------------|---------|---------------------------------|---------------------------|------------------|------------------------------------|-------------|----------------|---------|-------------------|---------------|
| RTU-01       |   | 61.2 °F                   | 62.3 °F |                                 | 1.130 in(H <sub>2</sub> 0 | 0)               | 1.200 in(H <sub>2</sub> O)         |             | Occupied       |         | Occupied          | RTU-1 VAS     |
| AV Box       |   |                           |         |                                 |                           |                  |                                    |             |                |         |                   |               |
| Name         |   | Space Temperature Act     | ive     | Space Temperature<br>Active     | Setpoint                  | Air Valve Positi | on Command                         | Operating I | Mode           | Occupa  | ncy Request       | Controlled By |
| VAV-01-1-001 |   | 74.3 °F                   |         | 75.0 °F                         |                           | 34.0 %           |                                    | Occupied    |                | Occupie | d                 | RTU-01 AREA   |
| VAV-01-1-002 |   | 75.3 °F                   |         | 75.0 °F                         |                           | 45.0 %           |                                    | Occupied    |                | Occupie | d                 | RTU-01 AREA   |

### **Supply Air Reset**


- Program calculates the average space temperature from multiple zones and compares to the heating or cooling setpoint
- This works best with uniform and standardized setpoints throughout the building or area to prevent zones from "fighting" each other

| Linear Reset                        |                 |                                                                          |                          |                                                                              |                           |                       |               |  |  |  |  |
|-------------------------------------|-----------------|--------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|---------------------------|-----------------------|---------------|--|--|--|--|
| Actions  Delete Create Linear Reset |                 |                                                                          |                          |                                                                              |                           |                       |               |  |  |  |  |
|                                     | Name 🔺          | Input Reference                                                          | Input Reference<br>Value | Output Reference                                                             | Output<br>Reference Value | Update Frequency      | Status        |  |  |  |  |
|                                     | RTU-01 DA Reset | Omega-N SC+ (30000) / RTU-01 AREA /<br>Space Temperature Average / Value | 72.5 °F                  | Omega-N SC+ (30000) / RTU-01 /<br>Discharge Air Cooling Setpoint BAS / Value | 63.0 °F                   | Update Every 1 Minute | Unconditional |  |  |  |  |
|                                     | RTU-02 DA Reset | Omega-N SC+ (30000) / RTU-02 AREA /<br>Space Temperature Average / Value | 72.6 °F                  | Omega-N SC+ (30000) / RTU-02 /<br>Discharge Air Cooling Setpoint BAS / Value | 61.3 °F                   | Update Every 1 Minute | Unconditional |  |  |  |  |
|                                     | RTU-03 DA Reset | Omega-N SC+ (30000) / RTU-03 Area /<br>Space Temperature Average / Value | 70.9 °F                  | Omega-N SC+ (30000) / RTU-03 /<br>Discharge Air Cooling Setpoint BAS / Value | 63.0 °F                   | Update Every 1 Minute | Unconditional |  |  |  |  |
|                                     | RTU-04 DA Reset | Omega-N SC+ (30000) / RTU-04 AREA /<br>Space Temperature Average / Value | 70.2 °F                  | Omega-N SC+ (30000) / RTU-04 /<br>Discharge Air Cooling Setpoint BAS / Value | 60.0 °F                   | Update Every 1 Minute | Unconditional |  |  |  |  |

# **Economizer Enthalpy Control**

- Utilize a single high quality outdoor air temp and dewpoint or wetbulb sensor for all units in the building
- Possible to share the OADB and OAWB/DP between multiple geographically close buildings by sharing points through the network





# **Economizer Enthalpy Control Example**

### **Chilled Water Reset Strategies**

- Reset chilled water temperature setpoint based on outdoor air temperature
- Make sure chilled water temperature is low enough to allow dehumidification
- Reset secondary chilled water pump speed based on AHU CHW valve positions
  - This assumes a Primary/Secondary chiller plant design
  - Valves must be properly sized control valves and butterfly valves



# **Retro-Commissioning**

- You can't optimize broken equipment
- Damper and valve actuators either seized up or not calibrated are common culprits
- Consider implementing a sensor calibration program to check accuracy of sensors
- Perform daily rounds and "virtual" rounds by checking your BAS at the start of each shift





# **Successful Energy Projects**

- Water-side free cooling and refrigerant migration chillers
- Riverview new chillers
- UPS replacements
- Campus VAV and BAS retrofit project
- All of these projects had a favorable ROI!



### **Lighting Retrofits**

#### 2012

Early LED retrofit projects began with exterior parking lot fixtures

#### 2013-2014

LED lamp replacements began

- Elevator Cabs
- Campus 1 Main Street Downlights

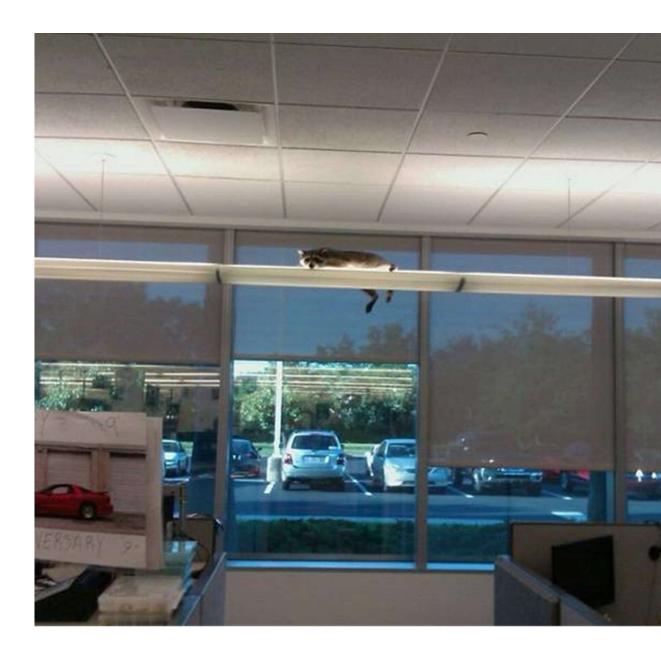
#### 2015

Industry starts to see steep decline in LED lamp and fixture costs

#### 2016-2017

Larger scale roll out of projects including:

- Artwork Track Lighting
- Downlights


#### 2018

- LED T8 "tubes" become economically viable
- Progressive purchases 25,000 LED T8 lamps to retrofit Campus 1, Discovery, Eastmark

#### 2022 - 2023

- Retrofit ~20,000 lamps with LED at Campus 2
- Corporate-wide parking lot LED retrofits are in planning

# **Raccoon Approved!**



# **Campus 2 Solar Array Construction**

- Construction began in 2021
- Hurdles tying into the FirstEnergy substation delayed the project many months
- Began delivering power to Campus 2 in January 2023





### **Campus 2 Solar Array Facts**

13 DC to AC inverters convert power from 4,134 solar panel modules generate 1.8 megawatts of power and are estimated to generate 2.3 million kilowatt-hours annually.

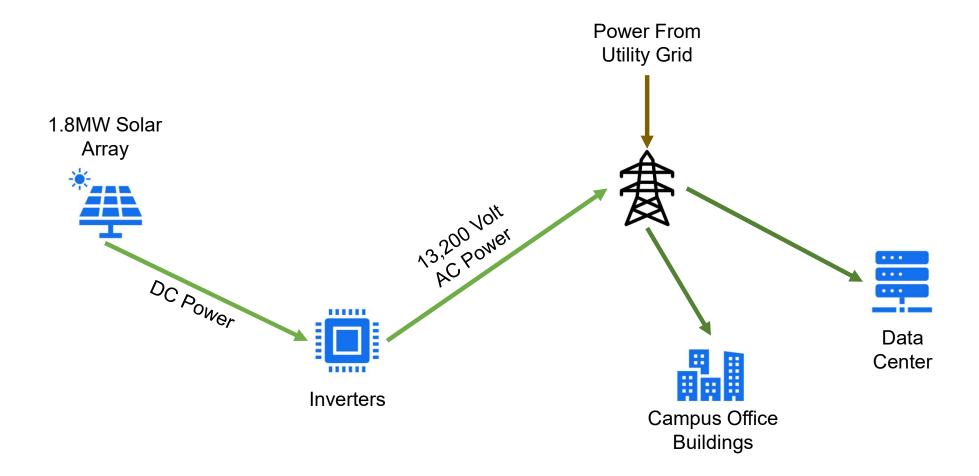
Power 205 homes for a year

That's enough energy to: Drive 19 round trips to the moon in a Tesla Model Y

Charge 198 million smart phones









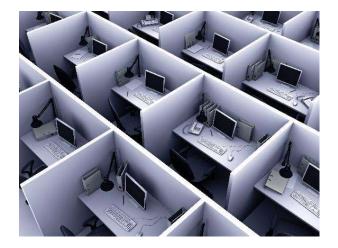

Compared to using coal to generate electricity, the solar array is the equivalent of planting 27,000 trees!



# **Campus 2 Solar Array Power Flow**



# **Campus 2 Solar Array Performance**


- Installation cost was ~\$2.1M with a ROI of 6 to 8 years
- Annual energy savings ~\$300k
- Estimated lifetime savings of up to \$5M
- Feeds into utility substation which serves all of Campus 2 and data center





# **Shuttered Building Savings**

- Minimize energy use in buildings in a WFH or hybrid world
- Set BAS systems to unoccupied
  - 60degF Heating Setpoints
  - 80degF Cooling Setpoints
  - Humidistats will occupy zones above 65% RH to dehumidify and prevent mold
- Alarming for zones that are outside of set parameters
- Work with business units to consolidate people to a minimal number of areas





Questions



# **Questions?**

# **PROGRESSIVE**<sup>®</sup>

# **Thank You**

Energy Successes @ Progressive

I N E N RULE 29

February 2024

### **Biographical Information**

#### Erik Rasmussen, CEM

Erik is the Environmental Sustainability Program Manager at Progressive. He joined Progressive's Real Estate Engineering team in 2013 as a Facility Engineer. Erik holds a BS in Mechanical Engineering and has 16 years of experience in energy engineering, auditing, HVAC, automation, and sustainability.

#### Mark Mansell, CEM

Mark is a Senior Engineering Consultant at Progressive. He joined Progressive's Real Estate Engineering Team in 2007 as an Automation Manager and brough over 44 Years of experience in commercial and industrial HVAC, automation, and electrical systems to the team.