## HEAT INJURY AND ILLNESS PREVENTION

Mike Lindsey MS, CIH, CSP





## **ENABLING DISCUSSION OBJECTIVES**



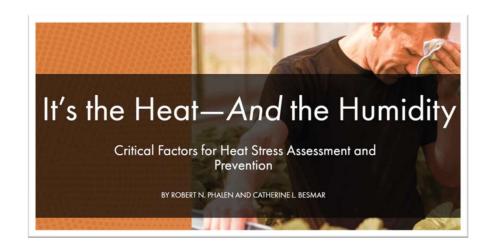

- Critical factors that can contribute to heat stress
- Determining heat hazard exposure risk
- Effective controls to mitigate heat stress
- OSHA heat initiatives & emphasis



# **HEAT STRESS FACTORS**

### HOW THE BODY HANDLES HEAT

- Regulation by hypothalamus
- Increased heart rate
- Increased blood circulation to skin
- Evaporative cooling from sweating
- Heat dissipation from skin




Source: Stock Photo

### FACTORS ASSOCIATED WITH HEAT STRESS

#### **Critical Factors**

- 1. Temperature
- 2. Air velocity
- 3. Humidity
- 4. Radiant heat
- 5. Clothing
- 6. Metabolic rate
- 7. Acclimatization



Source: https://synergist.aiha.org/202004-heat-and-humidity

## FACTORS ASSOCIATED WITH HEAT STRESS

#### Temperature

- Elevated air temperatures affect body's ability to dissipate heat
- Heat flows from warm to cool
  - Conduction, Convection, Radiation

#### Humidity

- A ratio of how much water vapor is in the air compared to how much it can hold
- Percentile range from 0-100

#### **Air Velocity**

- Air velocity affects evaporative cooling and convective heat transfer
- Variable effect depending on air temperature relative to skin temperature

#### **Radiant Heat**

- Electromagnetic energy
- Transfers from warmer surfaces to cooler surfaces
- Can pass through the air without heating it significantly

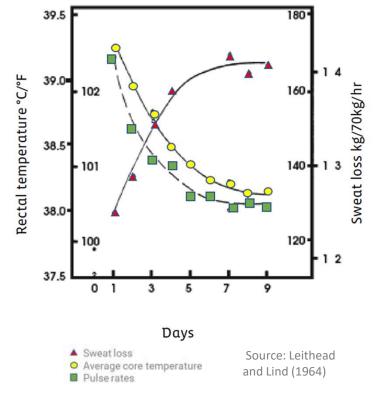
## FACTORS ASSOCIATED WITH HEAT STRESS (CONT'D)

#### Clothing

- Characteristics affect rates of heat dissipation and evaporative cooling
- Coverage may reduce radiant heat transfer

#### **Metabolic Rate**

- Energy expenditure over time
- More exertion, more energy, more heat
- Individual differences matter


#### **Acclimatization**

- Progressive body adaptions to hot work environments
- Increased sweating -> increased evaporative cooling
- Increased skin blood flow -> increased convective heat transfer

## ACCLIMATIZATION

- Progressive body adaptions to hot environments:
  - Increased sweating -> increased evaporative cooling
  - Increased skin blood flow -> increased convective heat transfer
  - Reduced heart rate
- 10-14 days needed to acclimate to hot environments
- Gradually increase exposure to hot environments
- Considerations for 're-acclimatization'

Source: https://www.cdc.gov/niosh/topics/heatstress/acclima.html



### **HEAT STRESS RISK FACTORS**

Previous history of heat-related illness Advanced age Physical fitness Medical conditions Medications Alcohol and/or drug use Caffeine



Source: NIOSH - Occupational Exposure to Heat and Hot Environments

### **HEAT STRESS RISK FACTORS**

- Some personal medical conditions and medications may increase risk of heat stress.
- Implications for preassignment physicals and accurate job descriptions to screen for heat intolerance.

Source: NIOSH – Occupational Exposure to Heat and Hot Environments https://www.cdc.gov/niosh/docs/2016-106/default.html

| Drug or drug class                                                            | Proposed mechanism of action                                                                    |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Anticholinergics<br>(e.g., benzotropine, trihexyphenidyl)                     | <ul> <li>Impaired sweating</li> </ul>                                                           |  |  |  |  |  |  |
| Antihistamines                                                                | <ul> <li>Impaired sweating</li> </ul>                                                           |  |  |  |  |  |  |
| Phenothiazines                                                                | <ul> <li>Impaired sweating, (possibly) disturbed hypothalamic temperature regulation</li> </ul> |  |  |  |  |  |  |
| Tricyclic antidepressants (e.g., imipramine,<br>amitriptyline, protriptyline) | <ul> <li>Impaired sweating, increased motor activity and<br/>heat production</li> </ul>         |  |  |  |  |  |  |
| Amphetamines, cocaine, ecstasy                                                | <ul> <li>Increased psychomotor activity, activated<br/>vascular endothelium</li> </ul>          |  |  |  |  |  |  |
| Analgesics (e.g., acetaminophen, aspirin)                                     | <ul> <li>Liver or kidney damage</li> </ul>                                                      |  |  |  |  |  |  |
| Ergogenic stimulants<br>(e.g., ephedrine/ephedra)                             | <ul> <li>Increased heat production</li> </ul>                                                   |  |  |  |  |  |  |
| Lithium                                                                       | <ul> <li>Nephrogenic diabetes insipidus and water loss</li> </ul>                               |  |  |  |  |  |  |
| Diuretics                                                                     | <ul> <li>Salt depletion and dehydration</li> </ul>                                              |  |  |  |  |  |  |
| Calcium channel blockers<br>(e.g., amlodipine, verapamil)                     | <ul> <li>Reduced skin blood flow and reduced blood pressure</li> </ul>                          |  |  |  |  |  |  |
| Ethanol                                                                       | <ul> <li>Diuresis, possible effects on intestinal permeability</li> </ul>                       |  |  |  |  |  |  |
| Barbiturates                                                                  | <ul> <li>Reduced blood pressure</li> </ul>                                                      |  |  |  |  |  |  |
| Antispasmodics                                                                | <ul> <li>Impaired sweating</li> </ul>                                                           |  |  |  |  |  |  |
| Haloperidol                                                                   | <ul> <li>Tachycardia, altered central temperature regulation,<br/>and hyponatremia</li> </ul>   |  |  |  |  |  |  |
| Laxatives                                                                     | Dehydration                                                                                     |  |  |  |  |  |  |
| Beta blockers (atenolol, betaxolol)                                           | <ul> <li>Reduced skin blood flow, reduced blood pressure, and<br/>impaired sweating</li> </ul>  |  |  |  |  |  |  |
| Narcotics                                                                     | <ul> <li>Excessive sweating, salt depletion and dehydration</li> </ul>                          |  |  |  |  |  |  |
| Levothyroxine                                                                 | <ul> <li>Excessive sweating, salt depletion and dehydration</li> </ul>                          |  |  |  |  |  |  |

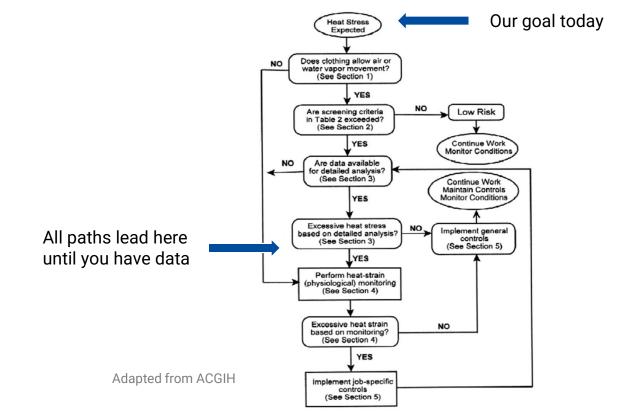
Table 4-2. Drugs implicated in intolerance to heat

Adapted from Heat Stress Control and Heat Casualty Management [DOD 2003].

### **CONTRIBUTING FACTORS TO HEAT STRAIN**

#### **Body Weight**

- Heavier people have a higher metabolic rate
- Standards based on 154lb person
- Adjustment
  - ACGIH TLV for heat stress
  - OSHA Technical Manual


#### **Work-Rest Schedule**

- Rest allows the body time to eliminate excess heat
- Blood flow diverted to the muscles can return to the skin
- ACGIH and NIOSH Guidelines



## HEAT HAZARD ASSESSMENT

### **HEAT HAZARD ASSESSMENT**



ASRC Industrial Services, LLC | Confidential | 14

### HEAT HAZARD ASSESSMENT (OTM, SEC III, CH 4)

- 1. Calculate WBGT using site-specific weather data
- 2. Add the Clothing Adjustment Factor to determine WBGT Effective
- 3. Determine the Metabolic Work Rate
- 4. Determine the Threshold Limit Value

Source: https://www.osha.gov/otm/section-3-health-hazards/chapter-4

### **STEP 1: WET BULB GLOBE TEMPERATURE (WBGT)**

- Developed to assess heat stress during military training
- Integrated index using the following temperatures:
  - Dry bulb temp  $(T_{DB})$
  - Natural wet bulb temp (T<sub>WB</sub>)
  - Globe temp  $(T_G)$



Source: 3M/ Quest

### **ALTERNATIVE SOURCES FOR WBGT**

- OSHA WBGT Calculator adapted from ANL to determine WBGT:
  - Air Temperature, °F or °C
  - Solar Irradiance, W/m2
  - Wind Speed, mph or m/s
  - Relative Humidity, %
  - Date and time
  - Barometric Pressure,
  - · Longitude and latitude,

https://www.osha.gov/heat-exposure/wbgt-calculator

| UNITED STATES<br>DEPARTMENT OF LABOR                                                                      | f 🏹 🖸 🖉 🕻                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                                                                                         |                                                                                                                                                |
| Planning and Supervision / Wet Bulb Globe Temper                                                          | ature (WBGT) Calculator                                                                                                                        |
| OSHA Outdoor WBGT Cal                                                                                     | culator                                                                                                                                        |
|                                                                                                           | perature (WBGT) from standard meteorological inputs. It<br>ear sky solar irradiance (Sandia, 2012). It then estimates<br>jegren et al. (2008). |
| This product includes software produced by UChicag<br>with the Department of Energy. See copyright notice | o Argonne, LLC under Contract No. DE-AC02-06CH1135<br>at the bottom of this page.                                                              |
| Please provide the following:                                                                             |                                                                                                                                                |
| Date in MM/DD/YYYY format:                                                                                |                                                                                                                                                |
| Local time in HH:MM format (24-hour time; ple                                                             | ase enter an hour between 00 and 23):                                                                                                          |
| Daylight Savings Time (DST) [in effect in most     Standard Time                                          | of U.S. from March until early November]                                                                                                       |
| 0 000000                                                                                                  |                                                                                                                                                |
| Time zone:                                                                                                |                                                                                                                                                |
| Select a time zone                                                                                        |                                                                                                                                                |

Source: OSHA

### WET BULB GLOBE TEMPERATURE (WBGT)

#### Why don't we just use the Heat Index?

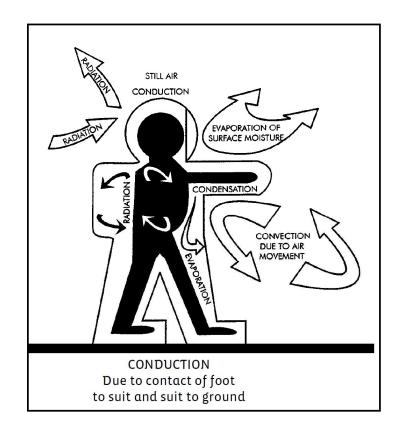
- Heat index only considers temperature and humidity
- It does not consider wind speed, radiant heat, clothing and metabolic heat from physical exertion, which are all factors that can contribute to heat stress

| NWS | WWS Heat Index Temperature (°F) |       |     |      |     |       |        |       |        |            |        |        |        |         |       |     |
|-----|---------------------------------|-------|-----|------|-----|-------|--------|-------|--------|------------|--------|--------|--------|---------|-------|-----|
|     | 80                              | 82    | 84  | 86   | 88  | 90    | 92     | 94    | 96     | 98         | 100    | 102    | 104    | 106     | 108   | 11  |
| 40  | 80                              | 81    | 83  | 85   | 88  | 91    | 94     | 97    | 101    | 105        | 109    | 114    | 119    | 124     | 130   | 13  |
| 45  | 80                              | 82    | 84  | 87   | 89  | 93    | 96     | 100   | 104    | 109        | 114    | 119    | 124    | 130     | 137   |     |
| 50  | 81                              | 83    | 85  | 88   | 91  | 95    | 99     | 103   | 108    | 113        | 118    | 124    | 131    | 137     |       |     |
| 55  | 81                              | 84    | 86  | 89   | 93  | 97    | 101    | 106   | 112    | 117        | 124    | 130    | 137    |         |       |     |
| 60  | 82                              | 84    | 88  | 91   | 95  | 100   | 105    | 110   | 116    | 123        | 129    | 137    |        |         |       |     |
| 65  | 82                              | 85    | 89  | 93   | 98  | 103   | 108    | 114   | 121    | 128        | 136    |        |        |         |       |     |
| 70  | 83                              | 86    | 90  | 95   | 100 | 105   | 112    | 119   | 126    | 134        |        |        |        |         |       |     |
| 75  | 84                              | 88    | 92  | 97   | 103 | 109   | 116    | 124   | 132    |            |        |        |        |         |       |     |
| 80  | 84                              | 89    | 94  | 100  | 106 | 113   | 121    | 129   |        |            |        |        |        |         |       |     |
| 85  | 85                              | 90    | 96  | 102  | 110 | 117   | 126    | 135   |        |            |        |        |        |         | -     | -   |
| 90  | 86                              | 91    | 98  | 105  | 113 | 122   | 131    |       |        |            |        |        |        |         | no.   | RRD |
| 95  | 86                              | 93    | 100 | 108  | 117 | 127   |        |       |        |            |        |        |        |         |       | ~   |
| 100 | 87                              | 95    | 103 | 112  | 121 | 132   |        |       |        |            |        |        |        |         |       | HE  |
| 100 |                                 |       |     | 1000 |     |       | s with | Prolo | nged E | Exposi     | ure or | Strenu | ious A | ctivity | ,     |     |
|     |                                 | autio | n   |      | Ð   | treme | Cautio | n     |        | <b>—</b> ( | Danger |        | E:     | ktreme  | Dange | er  |

Source: NOAA

### **STEP 2: CLOTHING ADJUSTMENT FACTORS**

As recommended by OSHA, the ACGIH Clothing Adjustment Factor (CAF) can be determined and added to the WBGT to produce an effective WBGT value\*.


$$WBGT_{Eff} = WBGT + CAF$$

| Clothing Worn                                                                                        | CAF (°F) |
|------------------------------------------------------------------------------------------------------|----------|
| Work clothes (long sleeves and pants). E.g., standard cotton shirt/pants.                            | 0        |
| Coveralls (w/only underwear underneath). E.g., cotton or light polyester                             | 0        |
| Double-layer woven clothing.                                                                         | 5.4      |
| SMS (spunbond/meltblown/spunbond) Polypropylene Coveralls                                            | 0.9      |
| Polyolefin coveralls (no hood) (e.g. Tyvek)                                                          | 1.8      |
| Polyolefin coveralls (with hood) (e.g. Tyvek)                                                        | 3.6      |
| Firefighter turn-out gear                                                                            | 18.0     |
| Limited-use vapor-barrier coveralls. Examples: whole- body chemical protective suites (e.g. Saranex) | 19.8     |

Source: OSHA Technical Manual as adopted from ACGIH "2019 TLVs and BEIs" & converted to  $\,^\circ\,\text{F}$ 

\* Cannot be used for multiple layer or encapsulating ensembles.

### **VISUALIZING ENCAPSULATING ENSEMBLES**



- Heat from metabolic process
- Carried to skin via bloodflow (convection)
- From skin it may be radiated, evaporated, or conducted
- Evaporative cooling loss within ensemble

Source: AIHA – The Occupational Environment.

### **STEP 3: METABOLIC RATE (MR<sub>EST</sub>)**

- ACGIH metabolic rates represent impact to the body core temperature
- Select a work category that best represents the workload using the provided guide
- If different activities are planned, use the heaviest workload to determine  $\rm Mr_{est}$

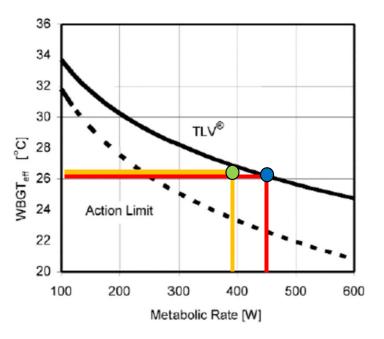
|            | Metabolic  |                                                                                                                                                         |  |  |  |  |  |  |
|------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Category   | Rate [W] * | Examples                                                                                                                                                |  |  |  |  |  |  |
| Rest       | 115        | Sitting                                                                                                                                                 |  |  |  |  |  |  |
| Light      | 180        | Sitting with light manual work with<br>hands or hands and arms, and<br>driving. Standing with some light<br>arm work and occasional walking.            |  |  |  |  |  |  |
| Moderate   | 300        | Sustained moderate hand and arm<br>work, moderate arm and leg work,<br>moderate arm and trunk work, or<br>light pushing and pulling. Normal<br>walking. |  |  |  |  |  |  |
| Heavy      | 415        | Intense arm and trunk work,<br>carrying, shoveling, manual sawing;<br>pushing and pulling heavy loads;<br>and walking at a fast pace.                   |  |  |  |  |  |  |
| Very Heavy | 520        | Very intense activity at fast to maximum pace.                                                                                                          |  |  |  |  |  |  |

Source: ACGIH "2019 TLVs and BEIs"

\* The effect of body weight on the estimated metabolic rate can be accounted for by multiplying the estimated rate by the ratio of actual body weight divided by 70 kg (154 lb).

## **STEP 3: METABOLIC RATE (MR<sub>EST</sub>)**

 $MR_{est} = \frac{Metabolic heat (in Watts) \times Worker body weight (in lbs.)}{154 lbs.}$ 


Two acclimated workers (200 and 265 lbs, respectively) are performing walk-around housekeeping of a worksite. What is their adjusted Mr<sub>est</sub>?

$$MR_{est} = \frac{(300 W)x(200 lbs)}{154 lbs} \qquad MR_{est} = \frac{(300 W)x(265 lbs)}{154 lbs}$$
$$MR_{est} = 389 W \qquad MR_{est} = 516 W$$

### STEP 4: DETERMINE THE TLV (ACGIH EVALUATION CRITERIA)

- Screening criteria for TLV and AL are initial screening tools to evaluate whether a heat stress situation may exist based on acclimation, WBGT, workload and work/rest regimen.
- Once either limit is reached, controls are necessary to prevent heat-related illness.

Assuming the two employees from previous slide are working on a 79°F day (26°C)...



Source: ACGIH "2019 TLVs and BEIs"

#### **EXAMPLE WORK/REST REGIMEN GUIDELINES** (ACCLIMATED WORKERS)

| WBGT <sub>eff</sub> °F<br>Temperature <sup>1</sup> | [Sel  |          | iod (minutes) <sup>2,3</sup><br>presentative work | load]      | Prevention and Control Strategy <sup>4</sup>                                             |  |  |  |
|----------------------------------------------------|-------|----------|---------------------------------------------------|------------|------------------------------------------------------------------------------------------|--|--|--|
| remperature                                        | Light | Moderate | Heavy                                             | Very Heavy |                                                                                          |  |  |  |
| > 86.0                                             | 60/0  | STOP     |                                                   |            | Consult Safety Dept. prior to the start of                                               |  |  |  |
| 86.0                                               | 60/0  | 30/30    |                                                   |            | work to discuss controls, proposed                                                       |  |  |  |
| 85.1                                               | 60/0  | 30/30    |                                                   | 510P       | engineering and administrative controls,                                                 |  |  |  |
| 84.2                                               | 60/0  | 45/15    | 30/30                                             | ]          | and physiological monitoring. Consider                                                   |  |  |  |
| 83.3                                               | 60/0  | 45/15    | 30/30                                             | 25/35      | rescheduling activities.                                                                 |  |  |  |
| 82.4                                               | 60/0  | 60/0     | 45/15                                             | 30/30      |                                                                                          |  |  |  |
| 80.6                                               | 60/0  | 60/0     | 60/0                                              | 45/15      | Caution indicates high levels of heat stress possible; consider and providing additional |  |  |  |
| 78.8                                               | 60/0  | 60/0     | 60/0                                              | 45/15      | engineering and administrative controls.                                                 |  |  |  |
| 77.9                                               | 60/0  | 60/0     | 60/0                                              | 60/0       |                                                                                          |  |  |  |
| 77.0                                               | 60/0  | 60/0     | 60/0                                              | 60/0       |                                                                                          |  |  |  |
| 76.1                                               | 60/0  | 60/0     | 60/0                                              | 60/0       | Implement general controls such as shaded/cool rest areas and hydration.                 |  |  |  |
| 75.2                                               | 60/0  | 60/0     | 60/0                                              | 60/0       |                                                                                          |  |  |  |

Adapted from ACGIH TLVs and BEIs [2019]

- 1) WBGT<sub>eff</sub> must include a clothing adjustment factor.
- 2) Based on ACGIH Threshold Limit Value (TLV) for acclimatized workers screening criteria.
- 3) Recovery periods must occur in a cooler area where relief from heat stress can take place to be a 'rest cycle'.
- 4) Reassess work category, clothing/PPE and environmental conditions if any of these factors change from initial assessment. New control strategies shall be implemented as needed.

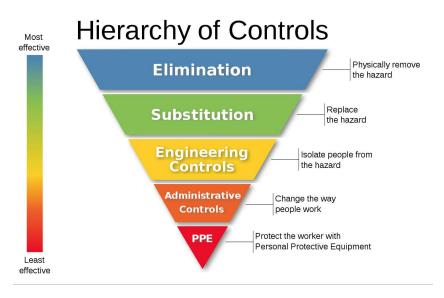
### **EXAMPLE WORK/REST REGIMEN GUIDELINES** (ACCLIMATED WORKERS WEARING CHEMICAL-RESISTANT SUITS)

| Air  |                      | Full Sun             |                      | I                 | Partly Cloudy        | /                    | No Sun <sup>1</sup> |                      |                   |  |
|------|----------------------|----------------------|----------------------|-------------------|----------------------|----------------------|---------------------|----------------------|-------------------|--|
| Temp | Light                | Mod                  | Heavy                | Light             | Mod                  | Heavy                | Light               | Mod                  | Heavy             |  |
| 95°F | STOP <sup>3</sup>    | STOP <sup>3</sup>    | STOP <sup>3</sup>    | STOP <sup>3</sup> | STOP <sup>3</sup>    | STOP <sup>3</sup>    | 15/45               | STOP <sup>3</sup>    | STOP <sup>3</sup> |  |
| 90°F | Caution <sup>2</sup> | Caution <sup>2</sup> | STOP <sup>3</sup>    | 20/40             | Caution <sup>2</sup> | Caution <sup>2</sup> | 40/20               | Caution <sup>2</sup> | STOP <sup>3</sup> |  |
| 85°F | 15/45                | 10/50                | Caution <sup>2</sup> | 40/20             | 25/35                | 15/45                | Normal              | 25/35                | 40/20             |  |
| 80°F | 30/30                | 20/40                | 10/50                | Normal            | Normal               | 40/20                | Normal              | Normal               | Normal            |  |
| 75°F | Normal               | Normal               | 35/25                | Normal            | Normal               | Normal               | Normal              | Normal               | Normal            |  |

Adapted from EPA [1993]

1) No shadows are visible or work is in the shade, at night or indoors.

2) Caution indicates high levels of heat stress; consider rescheduling activities and providing additional controls.


3) Consult Safety Dept. if work is to proceed to verify the proposed engineering and administrative controls.



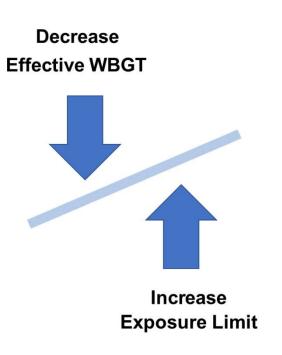
# **HEAT STRESS CONTROLS**

### **HEAT STRESS CONTROL STRATEGIES**

- Reduce heat exposure risk level
- Implement physiological monitoring
- Implement engineering controls
- Implement administrative / work practice controls
- Implement PPE & equipment controls



Source: NIOSH


### **REDUCING HEAT RISK LEVEL**

#### **Effective WBGT**

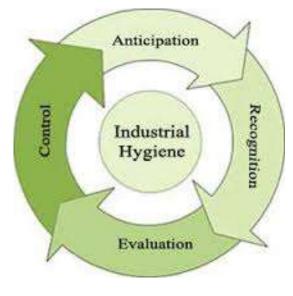
- Temperature and radiant heat
- Air velocity
- Humidity
- Clothing

#### **Occupational Exposure**

- Metabolic work rate
- Work-rest schedule



### **PHYSIOLOGICAL MONITORING**


Allows removal of employees from hot environments before illness

Provides quantitative measures of each employee's response to heat strain

- Body temperature
- Heart rate

Additional measures to help reduce dehydration

- Urine color
- Body weight



Source: AIHA

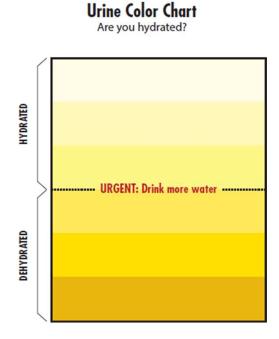
### PHYSIOLOGICAL MONITORING (CONT'D)

#### **Body Temperature**

- Deep body core temperature is single best measure of heat strain, but is ... *difficult...* to measure
  - Wearable technology (non-invasive)
  - Wireless 'pill' devices
- Body core temperature
  - < 101.3°F for acclimated personnel</li>
  - < 100.4°F unacclimated personnel</li>
- Oral temperature has been used as an acceptable substitute
- Axillary (armpit) also acceptable and used clinically

#### **Recovery Heart Rate**

- Pulse rate is good indicator of body temperature and heat stress
- Simple to obtain
- Take pulse rate at beginning of rest break (P1), and if pulse is above 100 bpm, then measure at 2-minute intervals.
- If resting pulse is > 100 bpm after 10 minutes, seek medical attention


### PHYSIOLOGICAL MONITORING (CONT'D)

#### Urine color monitoring

- Urine color as qualitative indicator of potential dehydration
  - Not good indicator of heat stress
- Normal urine should be pale yellow
- Darker urine can indicate dehydration
- Some diets, medications and illnesses may affect results

#### **Body Weight Monitoring**

• Weight loss over a shift > 1.5% body weight





### **ENGINEERING CONTROLS**

- Establish cooling areas
- Lower air temperature below skin temperature
  - Increasing air velocity
- Lower humidity to increase evaporative cooling
- Evaporative cooling (misters, swamp coolers) in low humidity environments
- Shielding from radiant heat



Source: Big Ass Fans

### WORK PRACTICE CONTROLS HYDRATION

#### Table 27.4 — Fluid Replacement Guidelines

- Workers should be careful to consume a well-balanced diet and drink plenty of nonalcoholic beverages in the day preceding severe heat exposure.
- Workers should avoid diuretic drinks immediately prior to work and drink as much as a half liter prior to commencement of work.
- During work, workers should try to drink as much and as frequently as possible.
- Workers should be provided cool drinks that appeal to them. Fluids can contain 40–80 g/L of sugar and 0.5 to 0.7 g/L of sodium.
- Workers should be encouraged to drink as much as possible and consume foods rich in electrolytes between work shifts and during breaks.
- Body weight should be monitored at the start and end of each shift to ensure that progressive dehydration is not occurring.

Note: These guidelines were adapted, in part, from McArdle, et al.<sup>(18)</sup>

Source: AIHA The Occupational Environment



Source: Cal/OSHA

#### WORK PRACTICE CONTROLS REST BREAKS, SHADE, AND SCHEDULING

#### **Rest Breaks**

- Allows blood to flow to skin to be cooled
- Slows down the buildup of heat in the body from prolonged muscle activity
- Allows heart rate to recover from sustained heat stress and physical exertion

#### Shade

- Blocks radiant heat source, provides rest area
   Scheduling
- Modified work schedules (duration and time of day)



Source: Safety Hubb

#### WORK PRACTICE CONTROLS HEAT ILLNESS PREVENTION PROGRAM

Consideration of the following:

- Monitoring of weather conditions
- Determination of exertion levels
- Access to unlimited water and shaded areas
- Scheduled rest breaks
- Acclimatization methods and procedures
- Work practice / administrative controls
- Emergency procedures
- Training for employees and supervisors
- Employee access to the program / site plan

OSHA Sample Heat Illness Prevention Plan: https://www.osha.gov/sites/default/files/2021-07/Model%20Heat%20Illness%20Prevention%2 OPlan.pdf

### **PERSONAL PROTECTIVE EQUIPMENT**

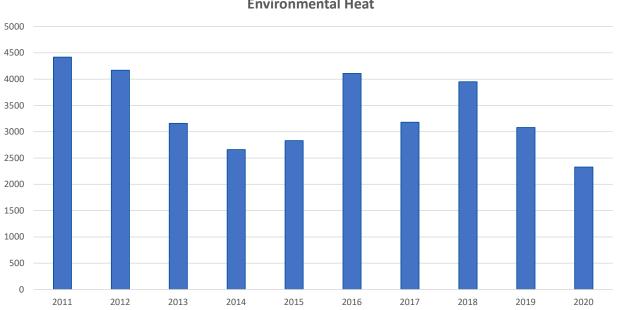
- Lighter, breathable clothing
- Reflective clothing, radiant barriers
- Infrared reflecting face shields
- Cooling neck wraps
- Air cooled suits / respirators
- [Evaporative] Cooling vests

#### **DRY & COMFORTABLE**

TECHNOLOGY GRADUALLY RELEASES WATER THROUGH EVAPORATION FROM THE INSIDE OUT -KEEPING YOU COOL, COMFORTABLE AND MOST IMPORTANTLY, DRY



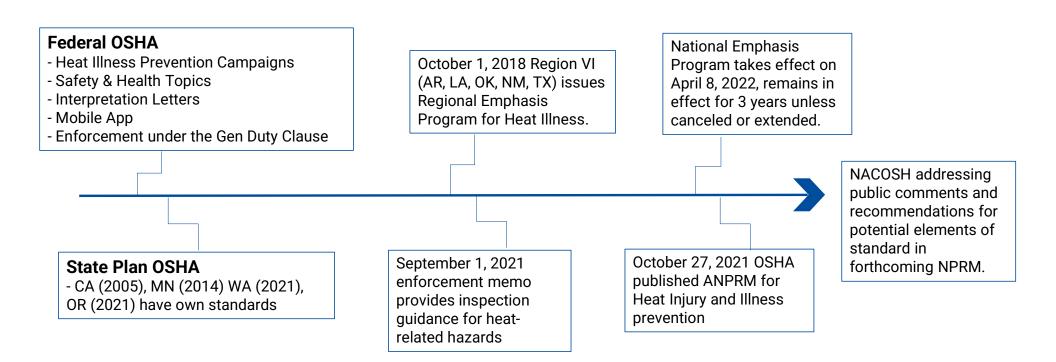
Source: Ergodyne


## **HEAT CONTROL MATRIX**

| Factor         | Effective Solution                                                                               |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------|--|--|--|
|                | Reschedule work for cooler times of the day                                                      |  |  |  |
| Temperature    | Reschedule heavy physical exertion (avoid strenuous work between 2-4PM)                          |  |  |  |
|                | Shift location of work activities                                                                |  |  |  |
| Air Velocity   | Increase air velocity using fans, when air temperatures and humidity are low                     |  |  |  |
|                | Shield against / decrease air velocity when air temperature significantly above skin temperature |  |  |  |
| Humidity       | Control and lower humidity to increase evaporative cooling                                       |  |  |  |
|                | Use local exhaust ventilation to capture and control humidity sources                            |  |  |  |
|                | Schedule strenuous work during periods of lower humidity                                         |  |  |  |
| Radiant Heat   | Provide shade and cooling areas                                                                  |  |  |  |
|                | Provide radiant barriers between sources and workers (insulation)                                |  |  |  |
|                | Lighter color, breathable, cooling or radiant barrier clothing                                   |  |  |  |
| Metabolic Heat | Use power tools to lessen physical exertion                                                      |  |  |  |
|                | Adjust work-rest schedule                                                                        |  |  |  |
|                | Worker selection                                                                                 |  |  |  |



# **OSHA HEAT INITIATIVES**


#### **HEAT-RELATED ILLNESS DATA**



Reported Occupational Injuries with DAFW as a Result of Exposure to Environmental Heat

Source: US Bureau of Labor Statistics: Injuries, Illnesses and Fatalities (Accessed March 7, 2023)

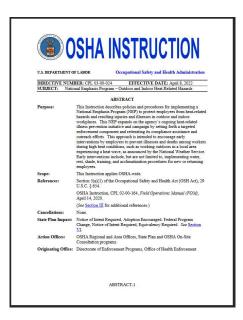
## **OSHA HEAT INITIATIVES – PAST AND PRESENT**



#### **STATE PLAN RULES - OVERVIEW**

| Standard<br>requirements                            | CA*                                                        | MN **                                                 | OR ***                                                                           | WA ****<br>(emergency rule additions<br>in italics)                                                     |
|-----------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Worksite coverage                                   | Outdoor, year-round                                        | Indoor, year-round                                    | Indoor and outdoor, emer-<br>gency rule.                                         | Outdoor, May 1-Sept. 30.                                                                                |
| Thresholds triggering pro-<br>tection requirements. | 80 °F (ambient temp.)                                      | Between 77 °F-86 °F<br>(WBGT) based on work-<br>load. | 80°F (NOAA NWS Heat<br>Index).                                                   | 89 °F (ambient temp.);<br>lower if wearing heavy<br>clothing/PPE.                                       |
| Add'I high heat protections                         | At 95 °F (certain industries only).                        | No                                                    | At 90 °F                                                                         | At 100 °F.                                                                                              |
| Water/Hydration                                     | 1 qt./hr./worker                                           | No                                                    | 1 qt./hr./worker, cool or cold.                                                  | 1 qt./hr./worker Suitably cool.                                                                         |
| Shade                                               | Yes                                                        | N/A                                                   | Yes                                                                              | Yes.                                                                                                    |
| Training                                            | Yes (new hire)                                             | Yes (new hire and annual)                             | Yes                                                                              | Yes (new hire and annual).                                                                              |
| Breaks                                              | Yes (Encouraged gen-<br>erally, mandatory if<br>symptoms). | Yes (After two hours expo-<br>sure at threshold).     | Yes (Mandatory if symp-<br>toms at any temp. every<br>2 hours for all at 90 °F). | Yes. (Encouraged prevent-<br>ative and must be paid;<br>Mandatory if symptoms;<br>Mandatory at 100 °F). |
| Acclimatization Plan                                | Yes                                                        | No                                                    | Yes (in practice at 90 °F)                                                       | No (only included in train-<br>ing).                                                                    |
| Heat Illness Prevention<br>Plan.                    | Yes                                                        | No                                                    | No                                                                               | Yes (as part of accident prevention plan).                                                              |
| Emergency Medical Re-<br>sponse Plan.               | Yes                                                        | No                                                    | Yes                                                                              | Yes.                                                                                                    |
| Medical Monitoring                                  | Reactive, Proactive when above 95 °F.                      | Reactive                                              | Reactive                                                                         | Reactive.                                                                                               |
| Record-keeping require-<br>ments.                   | Yes                                                        | Yes                                                   | No                                                                               | Yes.                                                                                                    |

Source: Federal Register / Vol. 86, No. 205, 2021 – ANPRM Heat Injury and Illness Prevention in Outdoor and Indoor Work Settings


#### **STATE PLAN RULES – OVERVIEW** MORE INFORMATION AND UPDATES

#### State Plan regulations in CA, MN, OR and WA

- CAL/OSHA, Title 8, section 3395. Heat Illness Prevention.
  - <u>https://www.dir.ca.gov/Title8/3395.html</u>
- Minnesota Administrative Rules. Section 5205.0110 Indoor ventilation and temperature in places of employment.
  - <u>https://www.revisor.mn.gov/rules/5205.0110/</u>
- Oregon Administrative Rules. 437-002-0156 Heat Illness Prevention
  - <u>https://osha.oregon.gov/OSHARules/adopted/2022/ao3-2022-text-alh-heat.pdf</u>
- Washington Administrative Code (WAC) Title 296, General Occupational Health Standards. Sections 296-62-095–296-62-0 9560.
  - Outdoor Heat Exposure
    - https://app.leg.wa.gov/WAC/default.aspx?cite=296-62&full=true#296-62-095
  - Emergency Rule 2125 CR103E. (Re-adopted 6/1/22)
    - <u>https://lni.wa.gov/rulemaking-activity/A022-22/2222CR103EAdoption.pdf</u>

#### **OSHA NEP-OUTDOOR AND INDOOR HEAT RELATED HAZARDS** INSPECTION GUIDANCE

- Applies to indoor and outdoor worksites where "potential heatrelated hazards exist"
- Allows OSHA to initiate heat-related assessments at NWS caution level on *heat priority days*
- Prioritizes inspections on days when heat index exceeds 80°F
  - (1) Heat-related complaints and referrals of heat related illness
  - (2) CSHO will either conduct intervention or open inspection
  - (3) Expand scope of other inspections to address heat-related hazards
- Outlines process for inspections
  - Field Operations Manual CPL 02-00-164
  - OSHA Technical Manual, Section III, Chapter 4 Heat Stress



https://www.osha.gov/sites/default/files/enforcement/ directives/CPL\_03-00-024.pdf

#### OSHA NEP-OUTDOOR AND INDOOR HEAT RELATED HAZARDS INSPECTION GUIDANCE (CONT'D)

During heat-related inspections, CSHOs will:

- Review OSHA 300 Logs for any entries indicating heat-related illness(es)
- Interview workers for reports of symptoms of heat-related illnesses
- Review the employer's heat stress plans including acclimatization procedures, work-rest schedules, access to shade and water, and training records
- Identify conditions and activities relevant to heat-related hazards including:
  - Sources of heat exposure
  - WBGT calculations
  - Heat advisories
  - Clothing, PPE and equipment
  - Vacations / gaps in employment

- Employee activities
- Metabolic heat rates
- Duration of exposure
- Water / shade availability
- Heat illness among SSE

# **OSHA-NIOSH HEAT SAFETY APP**

- Indicator of the current heat index
- Associated risk levels specific to your current
- Precautionary recommendations specific to risk levels from NIOSH
- Editable location, temperature, and humidity controls for calculation of variable conditions
- Signs and symptoms and first aid information for heatrelated illnesses

\*\* Relative to nearest weather station

https://www.cdc.gov/niosh/topics/heatstress/heatapp.html



## **DRINKING FROM A FIREHOSE?**



#### Keep it Simple.

- Anticipate and recognize when heat stress conditions are expected.
- Lots of tools available for estimating environmental heat conditions
- Use an objective basis for evaluating potential heat stress conditions.
- Plan the work, work the plan.



Unified by Purpose

#### **Biographical Information**

#### Mike Lindsey, MS,CIH, CSP Vice President HSE ASRC Industrial | MBE 1501 W Fountainhead Pkwy, Ste 550 Tempe, AZ 85282 Mobile | 219.808.9987 <u>mike.lindsey@asrcindustrial.com</u>

Mike has the privilege of serving as the Vice President of HSE for ASRC Industrial Services, a native Alaskan corporation of 4,500 employees providing industrial, environmental, multi-craft and engineered services to federal and private client nationwide. Mike endeavors to provide practical applications of HSE knowledge to further worker health and safety in complex environments and believes this is some of most rewarding work he's had the pleasure of performing.