SUSTAINABILITY WITH AN ROI. COMBINED HEAT AND POWER

1000

0

Powering the Future

Solar Turbines

A Caterpillar Company

EDWARD STOERMER VP COGEN SALES

BEN ROLFES SALES ENGINEER

Powering the Future

A Caterpillar Company

SEPTEMBER

2022 OMEC

1. OBJECTIVE: EXPLAIN HOW CHP HELPS ACHIEVE SUSTAINABILITY, OPERATIONAL, AND FINANCIAL GOALS

2. WHAT IT IS & HOW IT WORKS

3. IRA Tax Incentives

4. THE HEAT PART OF CHP

5. WHERE IT APPLIES

6. SIZE AND SELECTION OF GAS TURBINE (GT) & HEAT RECOVERY STEAM GENERATOR (HRSG)

7. TYPICAL PRELIMINARY CHP REPORT

8. DRIVERS: ECONOMICS & EMISSIONS REDUCTION

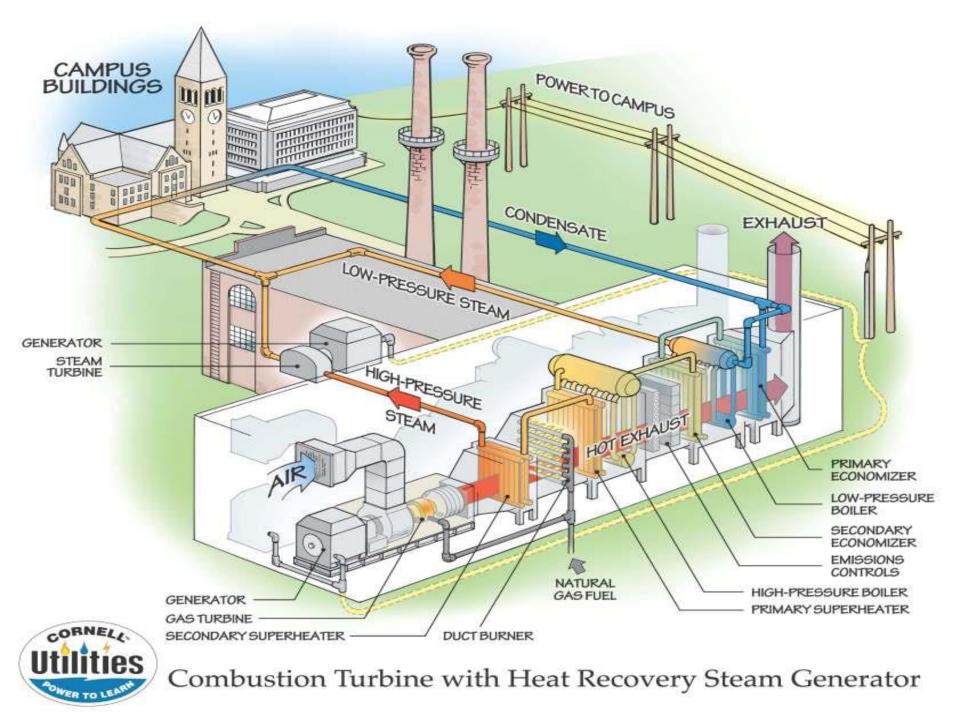
9. SUSTAINABILITY AND WHY CHP REALLY "MOVES THAT NEEDLE"

10. GREEN HYDROGEN.

11. Q&A SESSION

COMBINED HEAT & POWER : CHP / CO-GENERATION

COMBINED HEAT AND POWER: USES ONE FUEL SOURCE TO PRODUCE TWO TYPES OF USEFUL ENERGY.


FUELS:

NATURAL GAS, **DIGESTER GAS, LANDFILL GAS, RENEWABLE NAT GAS, HYDROGEN,** LIQUID FUELS, "OPPORTUNITY" FUELS.

USEFUL ENERGY PRODUCED:

ELECTRICAL ENERGY FOR PLANTS OR CAMPUSES.
STEAM FOR PROCESS OR HEATING OR POWER GEN
CHILLED & HOT WATER, HOT AIR FOR PROCESS DRYING

NATURAL GAS & REFINERY GAS

AGENDA 02-23-22 OHIO MANUFACTURERS' EDUCATION COUNCIL

1. **OBJECTIVE**: EXPLAIN HOW CHP HELPS ACHIEVE SUSTAINABILITY, OPERATIONAL, AND FINANCIAL GOALS

2. WHAT IT IS & HOW IT WORKS

3. THE HEAT PART OF CHP

4. WHERE IT APPLIES

5. SIZE AND SELECTION OF GAS TURBINE (GT) & HEAT RECOVERY STEAM GENERATOR (HRSG)

- 6. TYPICAL PRELIMINARY CHP REPORT
- 7. DRIVERS: ECONOMICS & EMISSIONS REDUCTION

8. SUSTAINABILITY AND WHY CHP REALLY "MOVES THAT NEEDLE"

9. GREEN HYDROGEN.

10. Q&A SESSION

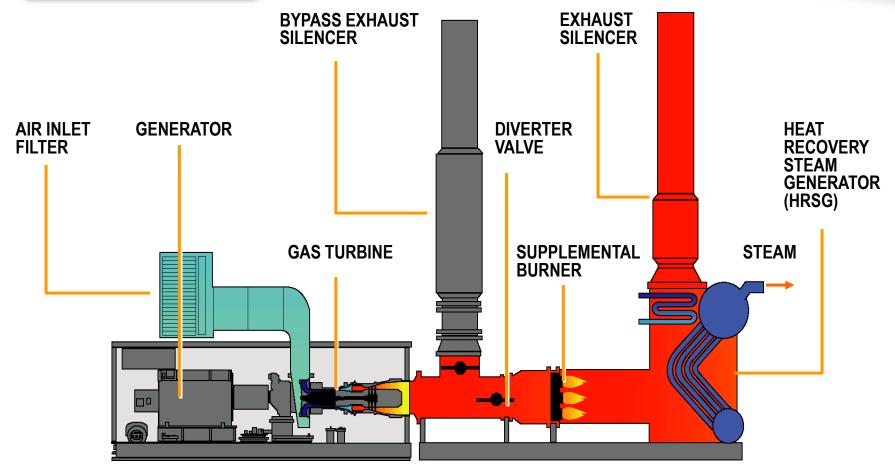
WHAT CHP IS NOT:

A AVAAAA

SMALL POWER PRODUCERS ARE MORE EFFICIENT THAN LARGE POWER PRODUCERS

Small Scale Power (CHP) Project

Utility Scale Power Producer



Without CHP	ENERGY	ENERGY USAGE	ENERGY USAGE, MW	ENERGY INPUT, MW	SYSTEM EFFICIENCY
	Thermal	36 000 lbs/hr	10.7	13.1	82%
	Electrical	5 460 kW	5.5	15.6	35%
S	Total		16.2	28.7	56%
With CHP	Thermal	36 000 lbs/hr	10.7	20.1	-
	Electrical	5 460 kW	5.5		-
Ŵ	Total		16.2	20.1	80.5%

43% Improvement in Efficiency

High Hydrogen Titan – 130 Units burn 50% H2 AS RENEWABLE NATURAL GAS & GREEN HYDROGEN BECOME READILY AVAILIABLE, SOLAR GT'S CAN ACCEPT THAT AS A FUEL AND BE ZERO EMISSIONS !!

SEPTEMBER

2022 OMEC

1. **OBJECTIVE**: EXPLAIN HOW CHP HELPS ACHIEVE SUSTAINABILITY, OPERATIONAL, AND FINANCIAL GOALS

2. WHAT IT IS & HOW IT WORKS

3. IRA TAX INCENTIVES

4. THE HEAT PART OF CHP

5. WHERE IT APPLIES

6. SIZE AND SELECTION OF GAS TURBINE (GT) & HEAT RECOVERY STEAM GENERATOR (HRSG)

7. TYPICAL PRELIMINARY CHP REPORT

8. DRIVERS: ECONOMICS & EMISSIONS REDUCTION

9. SUSTAINABILITY AND WHY CHP REALLY "MOVES THAT NEEDLE"

10. GREEN HYDROGEN.

11. Q&A SESSION

The recently passed IRA increased the ITC to 30% (was 10%) if certain provisions could be met.

- 1. Must meet the Prevailing Wage and Apprenticeship levels. This includes construction and repairs for the first 5 years of op.
- 2. Must be started by the end of 2024.
- **3.** Must meet 60% efficiency wouldn't be a problem for CHP.

- NEW: the tax credits are fully fungible. Meaning that you can sell the tax credit to another party. So if the end user's annual tax liability is less than the total of the tax credit, then:
- End user can either roll the remaining tax credit to the following year(s) or
- End user can sell the tax credit to another company who may want them.

2. Must be started by the end of 2024 with a 5% spend by 12-31-24.

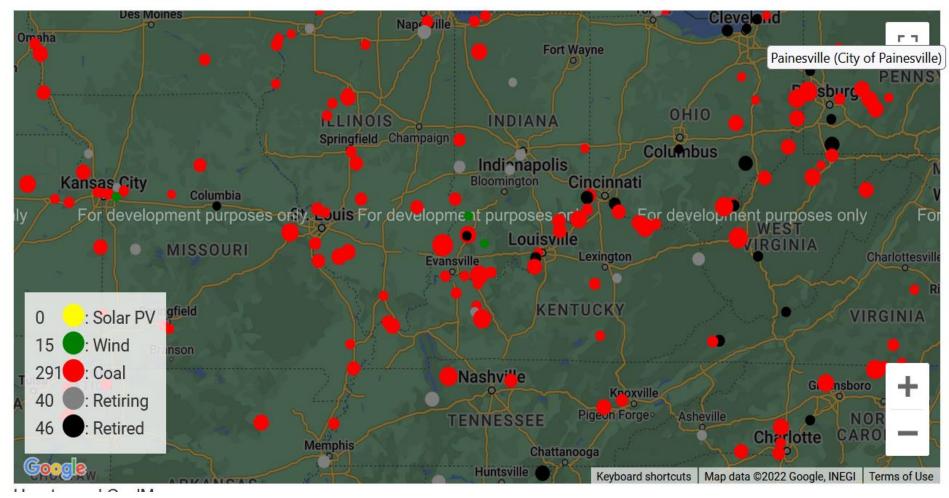
If your facility is considering Infrastructure up grades: Boilers, Chillers, Electrical, then the project economics improve even further due to a possible "cost avoidance" by not having to upgrade infrastructure.

• 30% ITC

Should be attainable provided you met prevailing wages and in some cases that may not be an issue given how hard it is to find people – need to pay more.

• 40% for 100% Made in America

- Lathrop Trotter CHP Preferred Component Suppliers: ALL MADE IN USA
- Solar Gas Turbines: Manufactured in San Diego California
- **Rentech Boilers**: Manufactured in Abilene TX
- Industrial Steam Deaerators: Chicago IL & Iowa


• 50% ITC

• For projects going into areas where coal fired plants have or will be taken off line and coal mines closed or will be closing.

COALMAP

Mapping the Economics of U.S. Coal Power and the Rise of Renewables

Solar Turbines

A Caterpillar Company

AGENDA 02-23-22 OHIO MANUFACTURERS' EDUCATION COUNCIL

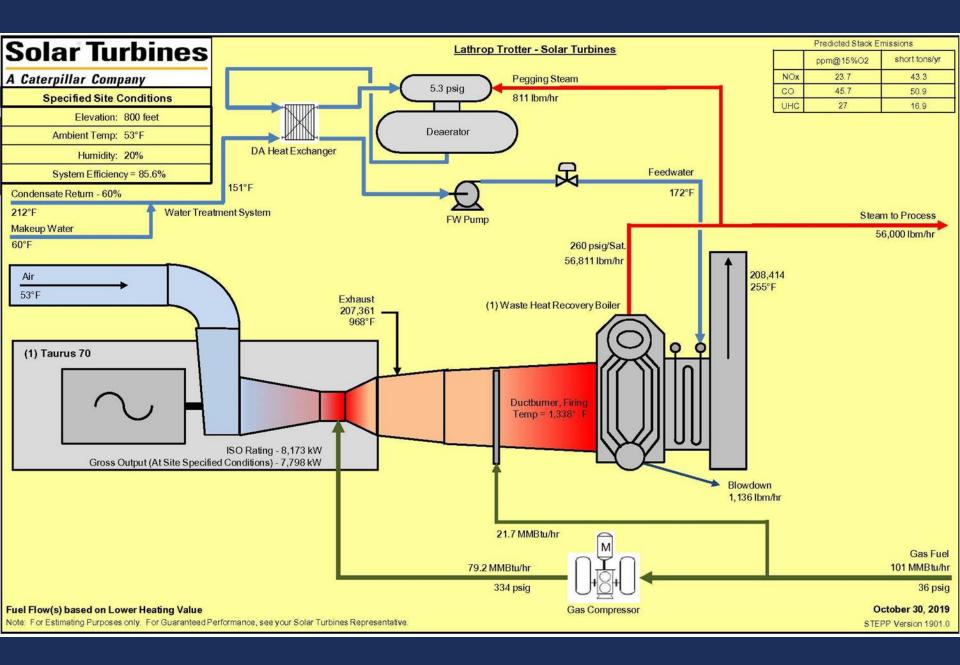
1. **OBJECTIVE**: EXPLAIN HOW CHP HELPS ACHIEVE SUSTAINABILITY, OPERATIONAL, AND FINANCIAL GOALS

2. WHAT IT IS & HOW IT WORKS

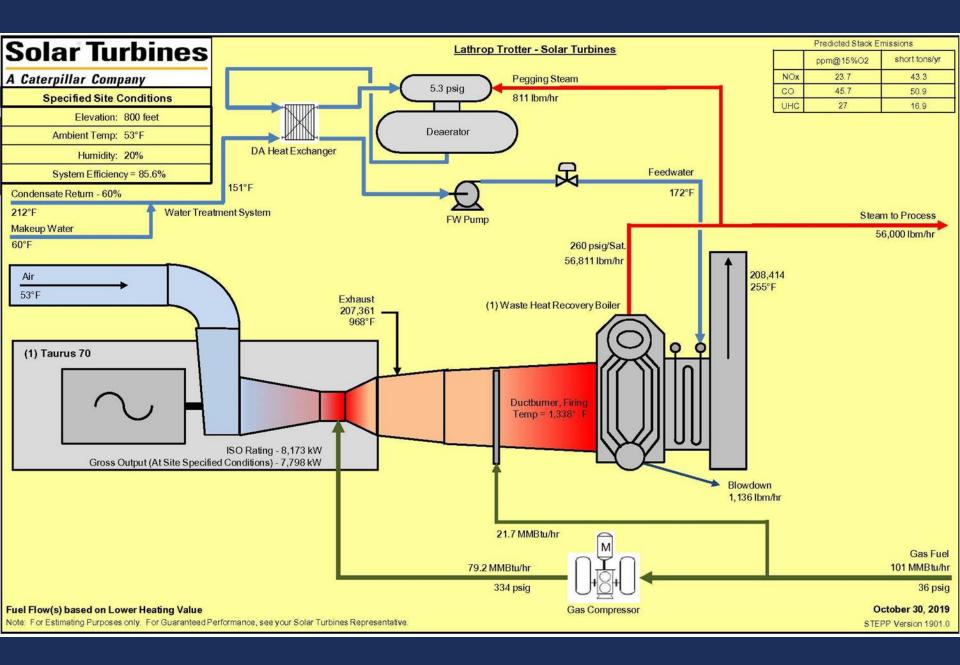
3. THE HEAT PART OF CHP

4. WHERE IT APPLIES

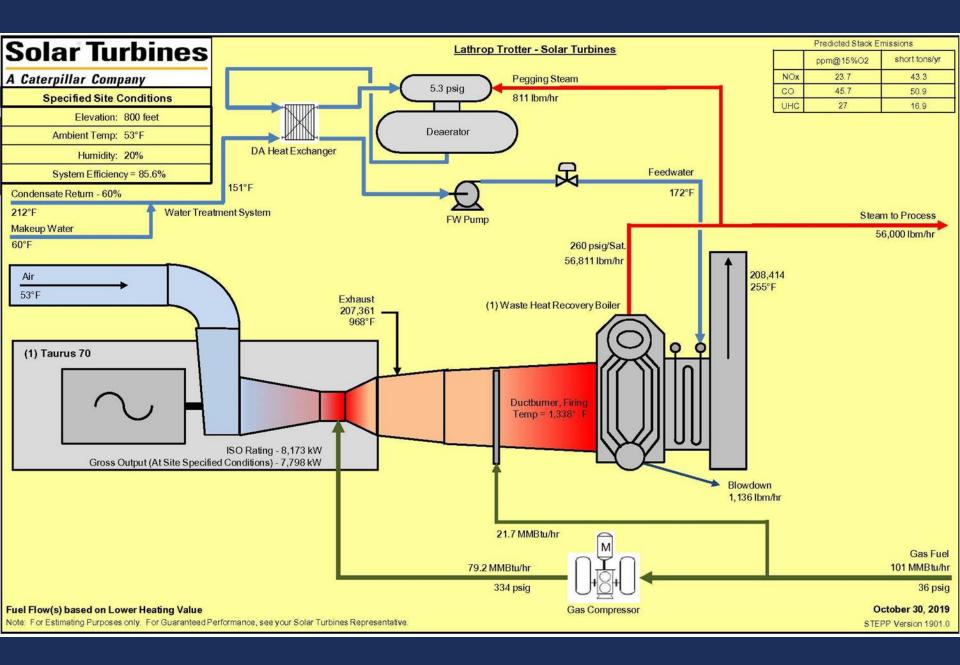
5. SIZE AND SELECTION OF GAS TURBINE (GT) & HEAT RECOVERY STEAM GENERATOR (HRSG)


- 6. TYPICAL PRELIMINARY CHP REPORT
- 7. DRIVERS: ECONOMICS & EMISSIONS REDUCTION

8. SUSTAINABILITY AND WHY CHP REALLY "MOVES THAT NEEDLE"

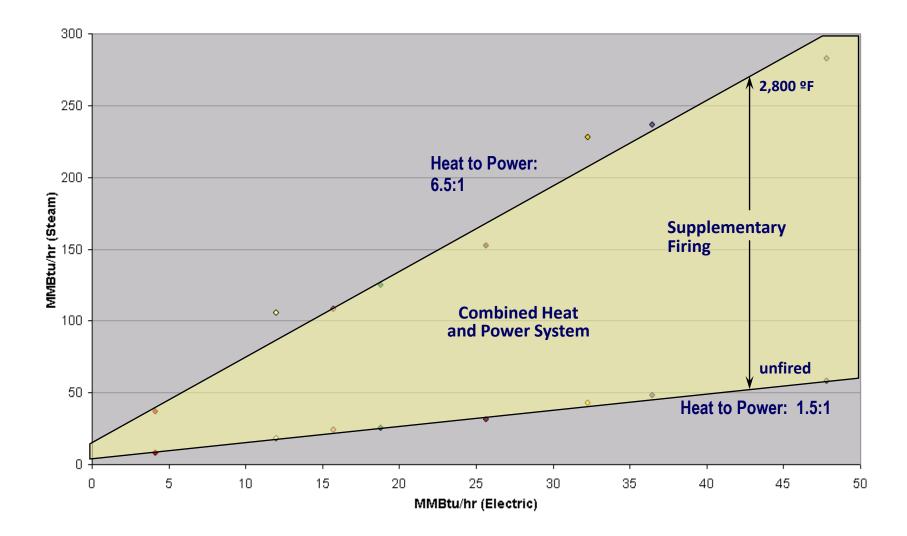

9. GREEN HYDROGEN.

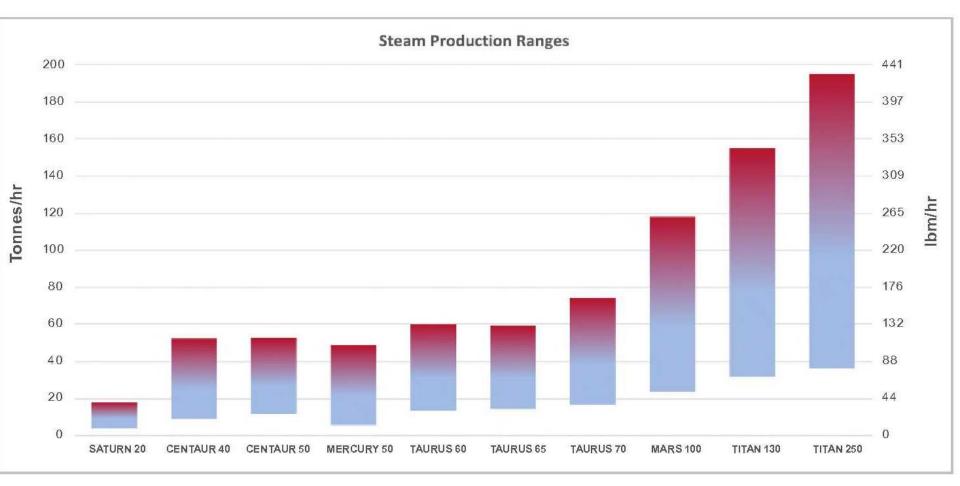
10. Q&A SESSION


WATER TUBE STYLE HEAT RECOVERY STEAM GENERATOR

TO RECOVER THE EXHAUSTED ENERGY FROM THE GAS TURBINE THESE HRSG'S CONVERT THE HOT GASES TO USEABLE STEAM FOR THE PLANT / PROCESS OR CAMPUS FOR HEATING.

FIRE TUBE STYLE HRSG





Duct Burner

HEAT / POWER RATIOS FOR CHP

COMBINED HEAT AND POWER PERFORMANCE



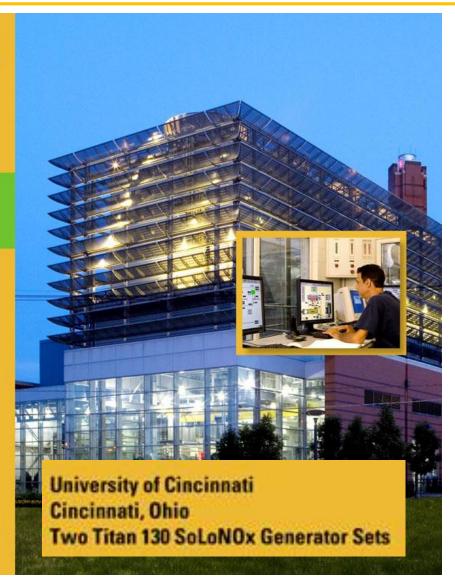
WHERE DOES CHP APPLY

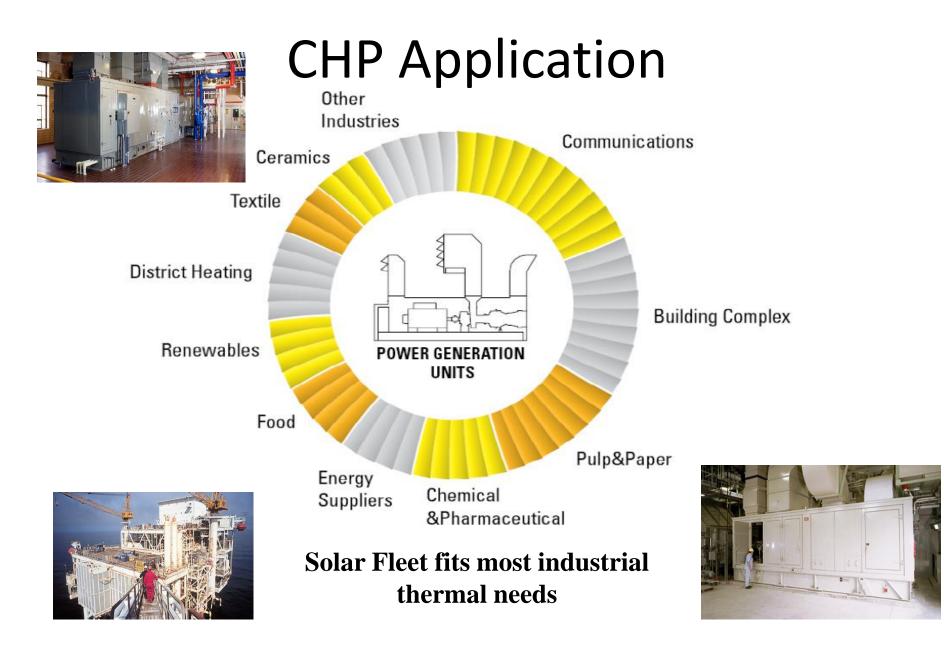
WHERE WE HAVE SUFFICIENT THERMAL (STEAM) LOADS

INDUSTRIES USING CHP

Caterpillar: Confidential Green

HIGHER EDUCATION: ENERGY STAR


EFFICIENT. RELIABLE. RESPONSIBLE. COMBINED HEAT AND POWER


CO2 Emissions Reduction Equivalent to Planting 4300 Acres of Forest

University of Cincinnati Cincinnati, Ohio Two Titan 130 SoLoNOx Generator Sets

SUSTAINABILITY OPERATIONS

FINANCIAL

SUSTAINABILITY

FINANCIAL

OPERATIONS

CHP MEETING MULTIPLE CORPORATE GOALS

DEPARTMENT	GOALS	HOW CHP MEETS GOALS
SUSTAINABILITY	REDUCE EMISSIONS & ACHIEVE GOALS 30-50% is Typical	EFFICIENCY & CLEAN FUELS
OPERATIONS	IMPROVE RELIABILITY & OPERATING EXPENSE REDUCE PRODUCTON COSTS	REDUNDANCY & RELIABILITY IMPROVEMENTS. REDUCE ENERGY COSTS
FINANCIAL	REDUCE PER UNIT COST OF PRODUCTION	REDUCE ENERGY EXPENDITURES
FINANCIAL	IMPROVE FORCASTING ACCURACY	FUEL COST STABILITY & PREDICTABILITY
OVERALL COMPANY	GOOD NEIGHBOR	PATH WAY ZERO CARBON EMISSIONS WITH ROI

SEPTEMBER

2022 OMEC

1. **OBJECTIVE**: EXPLAIN HOW CHP HELPS ACHIEVE SUSTAINABILITY, OPERATIONAL, AND FINANCIAL GOALS

2. WHAT IT IS & HOW IT WORKS

3. IRA Tax Incentives

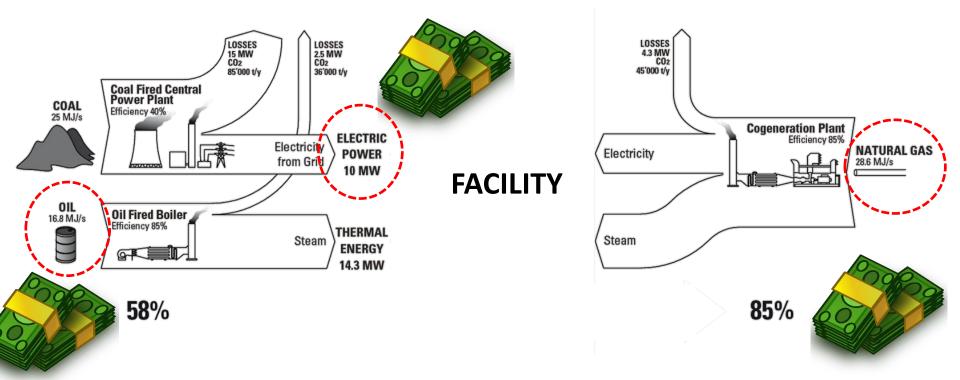
4. THE HEAT PART OF CHP

5. WHERE IT APPLIES

6. SIZE AND SELECTION OF GAS TURBINE (GT) & HEAT RECOVERY STEAM GENERATOR (HRSG)

7. TYPICAL PRELIMINARY CHP REPORT

8. DRIVERS: ECONOMICS & EMISSIONS REDUCTION


9. SUSTAINABILITY AND WHY CHP REALLY "MOVES THAT NEEDLE"

10. GREEN HYDROGEN.

11. Q&A SESSION

EFFICIENCY = CARBON REDUCTION AND \$ SAVINGS

Key question I CHP Analysis:

Is the cost of extra natural gas (or other fuel) for CHP system going to be less than the current electricity and fuel bill to supply my plant needs?

The results generated by the CHP Emissions Calculator are intended for educational and outreach purposes only; it is not designed for use in developing emission inventories or preparing air permit applications.

	CHP System	issions Analys Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NOx (tons/year)	43.51	78 92	44.50	79.90	653
SO2 (tons/year)	1.66	150.70	0.22	149.27	999
CO2 (metric tons/year)	83,973	112,520	48,035	76,583	489
Carbon (metric tons/year)	22 902	30,687	13,100	20.886	489
Fuel Consumption (MMBtu/year)	1,555,699	1,341,814	889,908	676,023	309
Acres of Forest Equivalent				20,886	
Number of Cars Removed				13,054	

Displaced Electricity Generation Profile: eGRID State Average Fossil 2016

Region Selected: Ohio

This reduction is equal to removing the carbon that would be absorbed by 20,886 acres of forest

This reduction is equal to removing the carbon emissions from 13,054 cars

AGENDA 02-23-22 OHIO MANUFACTURERS' EDUCATION COUNCIL

1. **OBJECTIVE**: EXPLAIN HOW CHP HELPS ACHIEVE SUSTAINABILITY, OPERATIONAL, AND FINANCIAL GOALS

2. WHAT IT IS & HOW IT WORKS

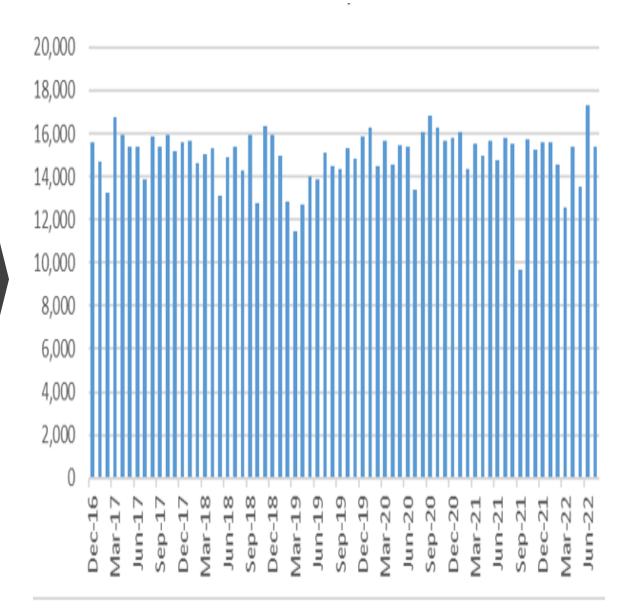
3. THE HEAT PART OF CHP

4. WHERE IT APPLIES

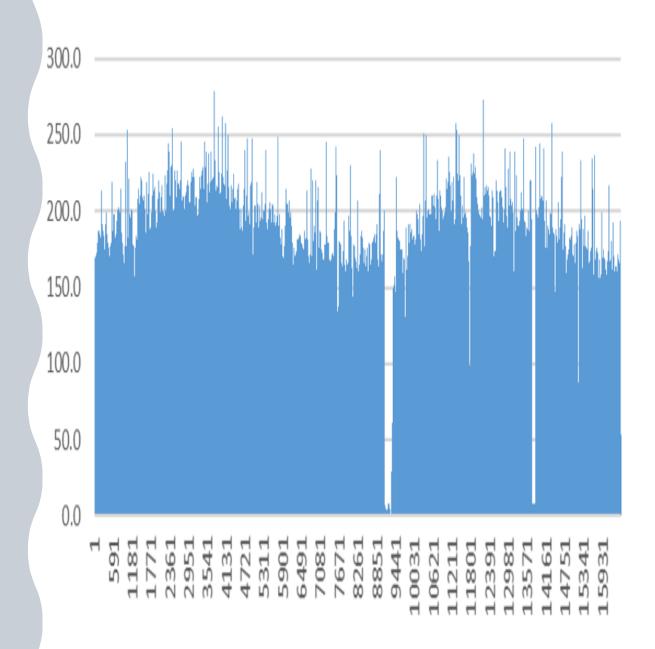
5. SIZE AND SELECTION OF GAS TURBINE (GT) & HEAT RECOVERY STEAM GENERATOR (HRSG)

6. TYPICAL PRELIMINARY CHP REPORT

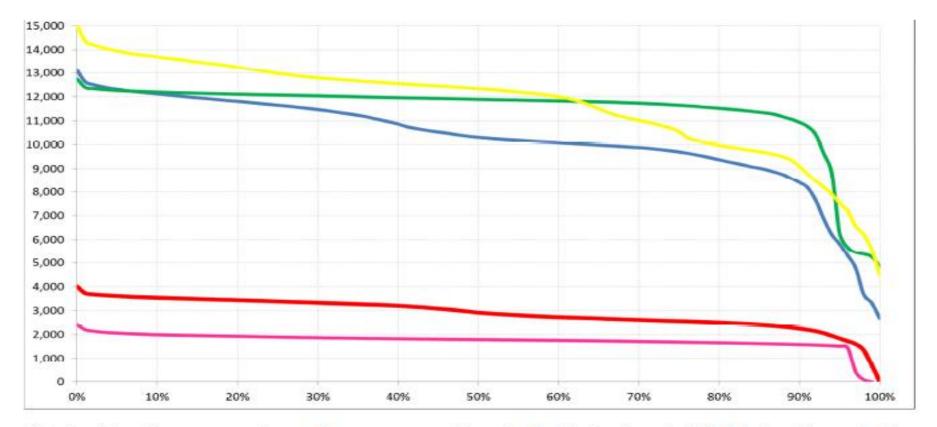
7. DRIVERS: ECONOMICS & EMISSIONS REDUCTION


8. SUSTAINABILITY AND WHY CHP REALLY "MOVES THAT NEEDLE"

9. GREEN HYDROGEN.


10. Q&A SESSION

Monthly Electrical Load



Hourly Steam Flow

Load Duration Curves

The load durations curves above show one year of hourly electric loads sorted high to low for each of the five sites. The graphs are not 'stacked' so the relative size can be viewed

Sol	ar	Tur	bi	nes
tion of the local division of the local divi	and the second second	and the output and	transfer to	

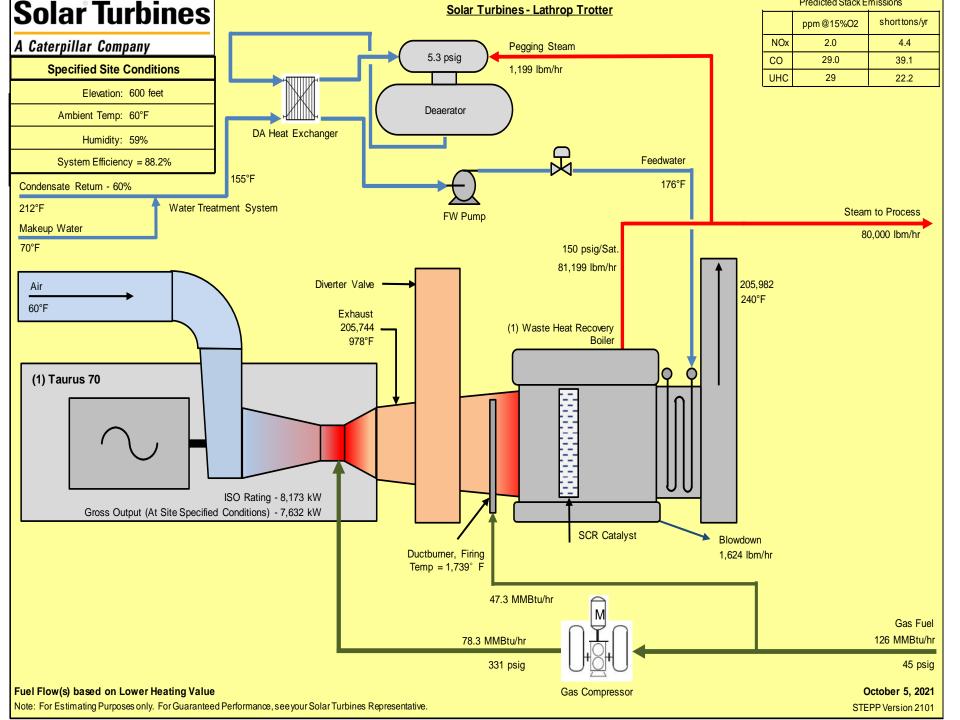
A Caterpillar Company

Lathrop Trotter - Solar Turbines

Solar Turbines Engine Performance Program v.1901.0

	Customer Name		Lathrop Trotter - Solar Turbines					
-	Project Name	Sample - Industrial Manufacturing						
	Project Location	Ohio, Indiana, Kentucky, Pennsylvania						
r								
	Turbine Selected/Modeled	lau	rus 70-111018			See STEPP TOOLS tab to select engine, reset		
	Fuel Type		Natural Gas	5		selections, and access other program features		
	Dual Fuel or Single Fuel?	Gas Only		•				
							0	
	Display selected column's results in	other sheets	0	0	0	0	0	0
	Site Elevation	feet	800	800	800	800	800	800
	Ambient Temperature (T1)	۴F	-10	32	53	53	68	93
	Relative Humidity	%	0	5	20	20	40	70
	Barometric Pressure	"Hg	29.1	29.1	29.1	29.1	29.1	29.1
NS N	Inlet Duct Loss	"H2O	4.0	4.0	4.0	4.0	4.0	4.0
ē	Exhaust Duct Loss	"H2O	10.0	10.0	10.0	10.0	10.0	10.0
נומו	Site Fuel Gas Pressure	psig	36	36	36	36	36	36
SITE CONDITIONS	Process Steam Pressure	psig	260	260	260	260	260	260
U E	Steam Saturation Temperature	°F	410	410	410	410	410	410
SIT	Process Steam Temperature	۴F	410	410	410	410	411	411
	Steam Flow to Process	lbm/hr	80,000	70,000	56,000	80,000	60,000	50,000
	Condensate Temperature	۴F	212	212	212	212	212	212
	Condensate Return	%	60	60	60	60	60	60
	Makeup Water Temperature	°F	60	60	60	60	60	60
			00	00	00	00	00	00

Solar Turbines

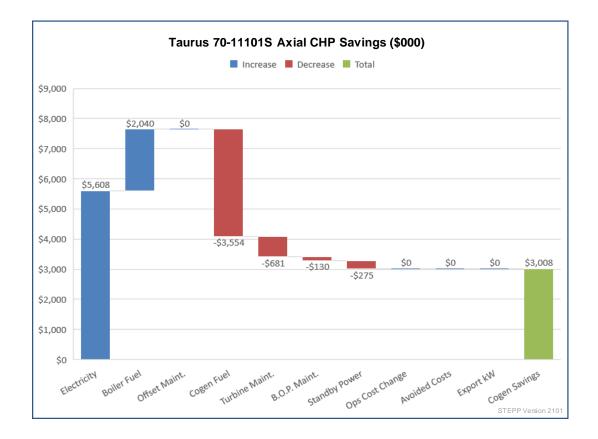

A Caterpillar Company

Solar Turbines - Lathrop Trotter

Midwest USA

Project Description:

(1) Taurus 70-11101S Axial with fired HRSG and SCR Emission Control System



Cogeneration Plant Estimated Performance Summary

KW Gross Output @ ISO Conditions:	8,170 KW
KW Gross Output @ specified site conditions:	7,632 KW
Net Gas Turbine Power Production:	7,330 KW
Boiler Steam Flow (HRSG design uses 27.0°F pinch, 18.0°F approach):	81,202 lbm/hr
Steam Flow to Process:	80,000 lbm/hr
Cycle Performance (lower heating value basis):	
Cycle Performance (lower heating value basis): Net Turbine Electrical Heat Rate:	10,680 Btu/kWHR
	10,680 Btu/kWHR ^{3,870} Btu/kWHR
Net Turbine Electrical Heat Rate:	,

STEPP Version 2101

Current System Costs:	
Annual Electricity Cost (offset by proposed system):	
7,330 kW x 0.09\$/kW x 8500 hrs/year =	\$5,607,500
Steam Production Costs (fuel and O&M):	
81,199 lbm/hr x 8500 hrs/year x \$3.00/klbm =	\$2,040,000
Current Annual Maintenance Costs to be Offset	\$0
Total Annual Current Costs	\$7,647,500
Proposed Cogeneration System Costs:	
Annual Cogeneration System Fuel Cost:	
125.6 MMBtu/hr x \$3.00/MMBtu x 1.109 HHV/LHV x 8500 hrs/year =	\$3,554,000
Turbine Maintenance Cost (based on gross power output):	
\$0.0105/kW-hr x 7,632 kW x 8500 hrs/year =	\$681,200
Balance of Plant Maintenance Cost (based on gross power output):	
\$0.002/kW-hr x 7,632 kW x 8500 hrs/year =	\$129,800
Standby Power Cost (based on gross power output):	
\$3.00/kW-month x 12 months x 7,632 kW =	\$274,800
Increase/Decrease in Annual Operations Cost	\$0
Avoided Costs, \$/year	\$0
Export KW Revenue, \$/year	\$0
Total Annual Proposed Costs	\$4,639,800

The results generated by the CHP Emissions Calculator are intended for educational and outreach purposes only; it is not designed for use in developing emission inventories or preparing air permit applications.

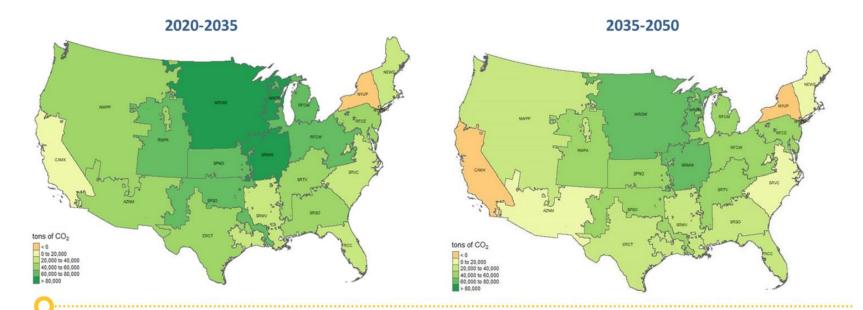
	CHP System	issions Analys Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction
NOx (tons/year)	43.51	78 92	44.50	79.90	653
SO2 (tons/year)	1.66	150.70	0.22	149.27	999
CO2 (metric tons/year)	83,973	112,520	48,035	76,583	489
Carbon (metric tons/year)	22 902	30,687	13,100	20.886	489
Fuel Consumption (MMBtu/year)	1,555,699	1,341,814	889,908	676,023	309
Acres of Forest Equivalent				20,886	
Number of Cars Removed				13,054	

Displaced Electricity Generation Profile: eGRID State Average Fossil 2016

Region Selected: Ohio

This reduction is equal to removing the carbon that would be absorbed by 20,886 acres of forest

This reduction is equal to removing the carbon emissions from 13,054 cars

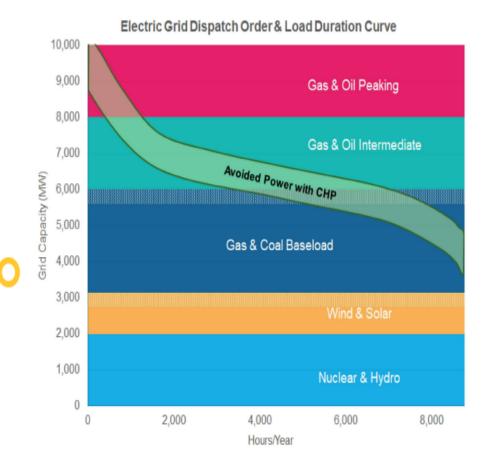

Estimating Future Emissions by eGRID Subregion

The subregion emission rates most accurately represent the actual electricity used by consumers by limiting the import and export of electricity within an aggregated area.

CHP REDUCES CARBON EMISSIONS **DRASTICALY** USING NATURAL GAS & REACHES ZERO EMISSIONS ON RNG & GREEN H2

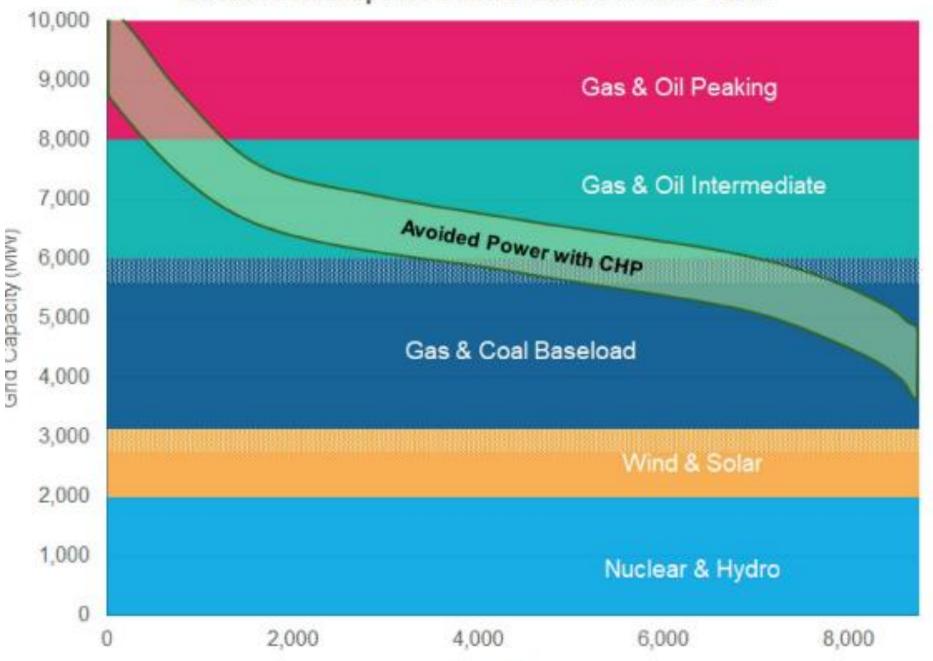
Lifetime Carbon Emission Reductions for CHP Systems

Evaluating CHP Emission Impacts


Displaced grid emissions for CHP are based on *marginal utility generation*

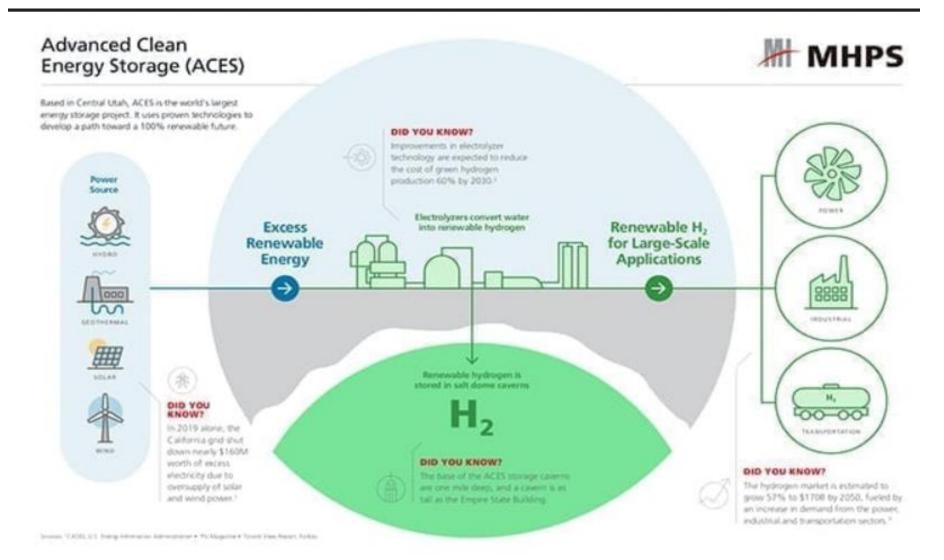
Marginal units are those at the "top of the stack" that set the electricity price in real-time or dayahead pricing

Currently, marginal generation tends to be provided by units fueled by gas, oil, and in some cases coal


- For CHP systems that operate 24/7, average fossil fuel emission factors from eGRID can be used
- For CHP systems that operate during day/evening hours, average non-baseload emission factors from eGRID provide a better estimate

Limitations in accurately estimating marginal emissions with eGRID

Electric Grid Dispatch Order & Load Duration Curve


Category	10 MW CHP	10 MW WHP	10 MW PV	10 MW Wind	10 MW NGCC
Annual Capacity Factor	85%	85%	24.9%	35.5%	57.6%
Annual Electricity, MWh	74,460	74,460	21,812	31,098	50,458
Annual Useful Heat Provided, MWh _{th}	97,505	None	None	None	None
Capital Cost, \$ million	\$20.2 m	\$15.0 m	\$17.8 m	\$16.2 m	\$10.0 m
Annual Energy Savings, MMBtu	360,420	787,597	230,720	328,938	200,693
Annual CO ₂ Savings, Tons	53,297	78,265	22,927	32,687	33,571
Annual NOx Savings, Tons	45.4	39.6	14.5	20.7	32.0

CHP's Higher Efficiency Results in Energy and Emissions Savings Compared to Today's Grid (Average Fossil Generation)

GREEN HYDROGEN

A KEY FACTOR IN REACHING ZERO EMISSIONS WITH CHP

INFLATION REDUCTION ACT (IRA)

WHAT MAKES CHP WORK ?

- **1.** Economics of Heat Recovery that replaces purchased fuel.
- 2. Economically Viable Pathway to Zero for Sustainability Goals
- 3. More Predictable Energy Costs.
- 4. Improved **Reliability** Power and Heat.
- 5. Avoided Costs should be considered.
- 6. Teamwork and Experience.
- 7. TAX INCENTIVES VIA IRA

LATHROP TROTTER Manufacturers Representatives

- Gas Turbines (2-25MW): Solar Turbines
- Heat Recovery Boilers: RENTECH & Superior Boiler Works
- Gas Compressors: Vilter / Emerson
- Deaerators and FW Equipment: Industrial Steam
- Steam Turbine Gen Sets: Dresser-Rand / Siemens (<60MW)

A Caterpillar Company

Thank you. Are there any questions?

Ed Stoermer 513-833-5800 c ed.stoermer@lathroptrotter.com Ben Rolfes 513-316-7940 c Ben.rolfes@lathroptrotter.com